Let A be an Artin algebra and let be an almost split sequence of A-modules with the indecomposable. Suppose that X has a projective predecessor and Z has an injective successor in the Auslander-Reiten quiver of A. Then r ≤ 4, and r = 4 implies that one of the is projective-injective. Moreover, if is a source map with the indecomposable and X on an oriented cycle in , then t ≤ 4 and at most three of the are not projective. The dual statement for a sink map holds. Finally, if an arrow X → Y in with valuation (d,d’) is on an oriented cycle, then dd’ ≤ 3.
@article{bwmeta1.element.bwnjournal-article-fmv143i2p183bwm, author = {S. Liu}, title = {Almost split sequences for non-regular modules}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {183-190}, zbl = {0801.16009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p183bwm} }
Liu, S. Almost split sequences for non-regular modules. Fundamenta Mathematicae, Tome 142 (1993) pp. 183-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p183bwm/
[00000] [1] M. Auslander and I. Reiten, Representation theory of artin algebras III: Almost split sequences, Comm. Algebra 3 (1975), 239-294. | Zbl 0331.16027
[00001] [2] M. Auslander and I. Reiten, Representation theory of artin algebras IV: Invariants given by almost split sequences, ibid. 5 (1977), 443-518. | Zbl 0396.16007
[00002] [3] R. Bautista and S. Brenner, On the number of terms in the middle of an almost split sequence, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 1-8. | Zbl 0483.16030
[00003] [4] R. Bautista and S. O. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. | Zbl 0515.16013
[00004] [5] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Lecture Notes in Math. 832, Springer, Berlin, 1980, 280-294. | Zbl 0446.16032
[00005] [6] M. Harada and Y. Sai, On categories of indecomposable modules, Osaka J. Math. 7 (1970), 323-344. | Zbl 0248.18018
[00006] [7] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992), 32-54. | Zbl 0703.16010
[00007] [8] S. Liu, Semi-stable components of an Auslander-Reiten quiver, ibid. 47 (1993), 405-416. | Zbl 0818.16015
[00008] [9] S. Liu, On short cycles in a module category, preprint. | Zbl 0824.16015
[00009] [10] I. Reiten, The use of almost split sequences in the representation theory of artin algebras, in: Lecture Notes in Math. 944, Springer, Berlin, 1982, 29-104.
[00010] [11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[00011] [12] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. | Zbl 0736.16007