Almost split sequences for non-regular modules
Liu, S.
Fundamenta Mathematicae, Tome 142 (1993), p. 183-190 / Harvested from The Polish Digital Mathematics Library

Let A be an Artin algebra and let 0Xi=1rYiZ0 be an almost split sequence of A-modules with the Yi indecomposable. Suppose that X has a projective predecessor and Z has an injective successor in the Auslander-Reiten quiver ΓA of A. Then r ≤ 4, and r = 4 implies that one of the Yi is projective-injective. Moreover, if Xj=1tYj is a source map with the Yj indecomposable and X on an oriented cycle in ΓA, then t ≤ 4 and at most three of the Yj are not projective. The dual statement for a sink map holds. Finally, if an arrow X → Y in ΓA with valuation (d,d’) is on an oriented cycle, then dd’ ≤ 3.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:212001
@article{bwmeta1.element.bwnjournal-article-fmv143i2p183bwm,
     author = {S. Liu},
     title = {Almost split sequences for non-regular modules},
     journal = {Fundamenta Mathematicae},
     volume = {142},
     year = {1993},
     pages = {183-190},
     zbl = {0801.16009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p183bwm}
}
Liu, S. Almost split sequences for non-regular modules. Fundamenta Mathematicae, Tome 142 (1993) pp. 183-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p183bwm/

[00000] [1] M. Auslander and I. Reiten, Representation theory of artin algebras III: Almost split sequences, Comm. Algebra 3 (1975), 239-294. | Zbl 0331.16027

[00001] [2] M. Auslander and I. Reiten, Representation theory of artin algebras IV: Invariants given by almost split sequences, ibid. 5 (1977), 443-518. | Zbl 0396.16007

[00002] [3] R. Bautista and S. Brenner, On the number of terms in the middle of an almost split sequence, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 1-8. | Zbl 0483.16030

[00003] [4] R. Bautista and S. O. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767. | Zbl 0515.16013

[00004] [5] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Lecture Notes in Math. 832, Springer, Berlin, 1980, 280-294. | Zbl 0446.16032

[00005] [6] M. Harada and Y. Sai, On categories of indecomposable modules, Osaka J. Math. 7 (1970), 323-344. | Zbl 0248.18018

[00006] [7] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992), 32-54. | Zbl 0703.16010

[00007] [8] S. Liu, Semi-stable components of an Auslander-Reiten quiver, ibid. 47 (1993), 405-416. | Zbl 0818.16015

[00008] [9] S. Liu, On short cycles in a module category, preprint. | Zbl 0824.16015

[00009] [10] I. Reiten, The use of almost split sequences in the representation theory of artin algebras, in: Lecture Notes in Math. 944, Springer, Berlin, 1982, 29-104.

[00010] [11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.

[00011] [12] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672. | Zbl 0736.16007