A class of closed, bounded, convex sets in the Banach space is shown to be a complete PCA set.
@article{bwmeta1.element.bwnjournal-article-fmv143i2p179bwm, author = {R. Kaufman}, title = {Extreme points and descriptive sets}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {179-181}, zbl = {0832.54031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p179bwm} }
Kaufman, R. Extreme points and descriptive sets. Fundamenta Mathematicae, Tome 142 (1993) pp. 179-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p179bwm/
[00000] [1] H. Becker, Pointwise limits of subsequences and sets, Fund. Math. 128 (1987), 159-170.
[00001] [2] H. Becker, S. Kahane and A. Louveau, Some complete sets in harmonic analysis, preprint, Univ. Paris VI, 1991.
[00002] [3] D. G. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983. | Zbl 0512.46017
[00003] [4] E. G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929-931. | Zbl 0139.40403
[00004] [5] J. E. Jayne and C. A. Rogers, The extremal structure of convex sets, J. Funct. Anal. 26 (1977), 251-288. | Zbl 0411.46008
[00005] [6] R. Kaufman, Co-analytic sets and extreme points, Bull. London Math. Soc. 19 (1987), 72-74. | Zbl 0601.54041
[00006] [7] J. Saint-RaymondPAIGN, 1409 WEST GREEN STREET, URBANA, ILLINOIS 61801, U.S.A.