When are Borel functions Baire functions?
Fosgerau, M.
Fundamenta Mathematicae, Tome 142 (1993), p. 137-152 / Harvested from The Polish Digital Mathematics Library

The following two theorems give the flavour of what will be proved. Theorem. Let Y be a complete metric space. Then the families of first Baire class functions and of first Borel class functions from [0,1] to Y coincide if and only if Y is connected and locally connected.Theorem. Let Y be a separable metric space. Then the families of second Baire class functions and of second Borel class functions from [0,1] to Y coincide if and only if for all finite sequences U1,...,Uq of nonempty open subsets of Y there exists a continuous function ϕ:[0,1] → Y such that ϕ-1(Ui)Ø for all i ≤ q.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:211997
@article{bwmeta1.element.bwnjournal-article-fmv143i2p137bwm,
     author = {M. Fosgerau},
     title = {When are Borel functions Baire functions?},
     journal = {Fundamenta Mathematicae},
     volume = {142},
     year = {1993},
     pages = {137-152},
     zbl = {0795.54039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p137bwm}
}
Fosgerau, M. When are Borel functions Baire functions?. Fundamenta Mathematicae, Tome 142 (1993) pp. 137-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p137bwm/

[00000] [1] S. Banach, Oeuvres, Vol. 1, PWN, Warszawa, 1967, 207-217.

[00001] [2] L. G. Brown, Baire functions and extreme points, Amer. Math. Monthly 79 (1972), 1016-1018. | Zbl 0254.26008

[00002] [3] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa, 1977.

[00003] [4] W. G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), 309-328. | Zbl 0428.03044

[00004] [5] R. W. Hansell, Borel measurable mappings for nonseparable metric spaces, ibid. 161 (1971), 145-169.

[00005] [6] R. W. Hansell, On Borel mappings and Baire functions, ibid. 194 (1974), 195-211.

[00006] [7] R. W. Hansell, Extended Bochner measurable selectors, Math. Ann. 277 (1987), 79-94. | Zbl 0598.28019

[00007] [8] R. W. Hansell, First class selectors for upper semi-continuous multifunctions, J. Funct. Anal. 75 (1987), 382-395. | Zbl 0644.54014

[00008] [9] R. W. Hansell, First class functions with values in nonseparable spaces, in: Constantin Carathéodory: An International Tribute, T. M. Rassias (ed.), World Sci., Singapore, 1992, 461-475.

[00009] [10] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.

[00010] [11] K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.

[00011] [12] M. Laczkowich, Baire 1 functions, Real Anal. Exchange 9 (1983-84), 15-28.

[00012] [13] C. A. Rogers, Functions of the first Baire class, J. London Math. Soc. (2) 37 (1988), 535-544. | Zbl 0687.54014

[00013] [14] S. Rolewicz, On inversion of non-linear transformations, Studia Math. 17 (1958), 79-83. | Zbl 0086.10104