The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two topological group topologies U and T, with U totally bounded, T locally compact,U ⊆ T, with U and T sharing the same compact sets, and such that nevertheless U is not the topology inherited from the Bohr compactification of ⟨ G, T⟩. There are applications to topological groups of the form kG for G a totally bounded Abelian group.
@article{bwmeta1.element.bwnjournal-article-fmv143i2p119bwm, author = {W. Comfort and F. Trigos-Arrieta and S. Wu}, title = {The Bohr compactification, modulo a metrizable subgroup}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {119-136}, zbl = {0812.22001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p119bwm} }
Comfort, W.; Trigos-Arrieta, F.; Wu, S. The Bohr compactification, modulo a metrizable subgroup. Fundamenta Mathematicae, Tome 142 (1993) pp. 119-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p119bwm/
[00000] [C] W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, 1143-1263.
[00001] [CHR] W. W. Comfort, K.-H. Hofmann and D. Remus, Topological groups and semigroups, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), North-Holland, Amsterdam, 1992, 57-144. | Zbl 0798.22001
[00002] [CR] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. | Zbl 0138.02905
[00003] [CT] W. W. Comfort and F. J. Trigos-Arrieta, Remarks on a Theorem of Glicksberg, in: General Topology and Applications, S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman and A. R. Todd (eds.), Lecture Notes in Pure and Appl. Math. 134, Dekker, New York, 1991, 25-33.
[00004] [DPS] D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov, Topological Groups, Lecture Notes in Pure and Appl. Math. 130, Dekker, New York, 1989.
[00005] [E] R. Engelking, General Topology, Monografie Mat. 60, PWN - Polish Scientific Publishers, Warszawa, 1977.
[00006] [F] P. Flor, Zur Bohr-Konvergenz von Folgen, Math. Scand. 23 (1968), 169-170.
[00007] [G] I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. | Zbl 0109.02001
[00008] [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963.
[00009] [Hu] R. Hughes, Compactness in locally compact groups, Bull. Amer. Math. Soc. 79 (1973), 122-123. | Zbl 0263.22006
[00010] [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. | Zbl 0281.10001
[00011] [K] V. Kuz'minov, On a hypothesis of P. S. Alexandrov in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727-729 (in Russian).
[00012] [L] W. F. LaMartin, On the foundations of k-group theory, Dissertationes Math. 146 (1977). | Zbl 0394.22001
[00013] [Mo] W. Moran, On almost periodic compactifications of locally compact groups, J. London Math. Soc. (2) 3 (1971), 507-512. | Zbl 0229.22008
[00014] [Re] G. A. Reid, On sequential convergence in groups, Math. Z. 102 (1967), 227-235. | Zbl 0153.04302
[00015] [RT] D. Remus and F. J. Trigos-Arrieta, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200. | Zbl 0826.22002
[00016] [Ro] K. A. Ross, Commentary on selected papers of S. Kakutani, in: S. Kakutani, Selected Papers, Vol. I, Robert A. Kallman (ed.), Birkhäuser, Boston, 1986.
[00017] [Š] B. È. Šapirovskiĭ, On embedding extremally disconnected spaces in compact Hausdorff spaces. b-points and weight of pointwise normal spaces, Dokl. Akad. Nauk SSSR 223 (1975), 1083-1086 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 1056-1061.
[00018] [Sc] I. J. Schoenberg, Asymptotic distribution of sequences (solution of Problem 5090), Amer. Math. Monthly 71 (1964), 332-334.
[00019] [Sh] D. B. Shakhmatov, A direct proof that every infinite compact group G contains , in: Papers in General Topology and Applications, Proc. June 1992 Queens College Conference, Ann. New York Acad. Sci., New York, to appear.
[00020] [Sm] Yu. M. Smirnov, On the metrizability of bicompacta decomposable into a union of sets with countable basis, Fund. Math. 43 (1956), 387-393 (in Russian). | Zbl 0071.38401
[00021] [Sto] A. H. Stone, Metrisability of unions, Proc. Amer. Math. Soc. 10 (1959), 361-366. | Zbl 0090.38705
[00022] [Str] K. R. Stromberg, Universally nonmeasurable subgroups of ℝ, Amer. Math. Monthly 99 (1992), 253-255. | Zbl 0757.28005
[00023] [T1] F. J. Trigos-Arrieta, Pseudocompactness on groups, doctoral dissertation, Wesleyan University, 1991.
[00024] [T2] F. J. Trigos-Arrieta, Pseudocompactness on groups, in: General Topology and Applications, Lecture Notes in Pure and Appl. Math. 134, S. Andima et al. (eds.), Dekker, New York, 1991, 369-378.
[00025] [T3] F. J. Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindelöf property for topological groups, J. Pure Appl. Algebra 70 (1991), 199-210 (= Proceedings of the 1989 Curaçao Conference on Locales and Topological Groups).
[00026] [Ve] R. Venkataraman, Compactness in Abelian topological groups, Pacific J. Math. 57 (1975), 591-595. | Zbl 0308.22009
[00027] [Vi] N. Ya. Vilenkin, On the dyadicity of the group space of bicompact commutative groups, Uspekhi Mat. Nauk 13 (6) (84) (1958), 79-80 (in Russian).
[00028] [W] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Publ. Math. Univ. Strasbourg, Hermann, Paris, 1937. | Zbl 63.0569.04