We prove a structure theorem asserting that each superflat graph is tree-decomposable in a very nice way. As a consequence we fully determine the spectrum functions of theories of superflat graphs.
@article{bwmeta1.element.bwnjournal-article-fmv143i2p107bwm, author = {A. Ivanov}, title = {The structure of superilat graphs}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {107-117}, zbl = {0785.03020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p107bwm} }
Ivanov, A. The structure of superilat graphs. Fundamenta Mathematicae, Tome 142 (1993) pp. 107-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i2p107bwm/
[00000] [1] J. T. Baldwin, Fundamentals of Stability Theory, Springer, New York, 1985. | Zbl 0685.03024
[00001] [2] J. T. Baldwin and S. Shelah, Second-order quantifiers and the complexity of theories, Notre Dame J. Formal Logic 26 (1985), 229-303. | Zbl 0596.03033
[00002] [3] H. Herre, A. H. Mekler and K. Smith, Superstable graphs, Fund. Math. 118 (1983), 75-79. | Zbl 0698.05042
[00003] [4] E. Hrushovski, Unidimensional theories are superstable, Ann. Pure Appl. Logic 50 (1990), 117-138. | Zbl 0713.03015
[00004] [5] L. F. Low, Superstable trivial theories, preprint.
[00005] [6] M. Makkai, A survey of basic stability theory, with particular emphasis on orthogonality and regular types, Israel J. Math. 49 (1984), 181-238. | Zbl 0583.03021
[00006] [7] L. Marcus, The number of countable models of a theory of one unary function, Fund. Math. 108 (1980), 171-181. | Zbl 0363.02055
[00007] [8] E. A. Palyutin and S. S. Starchenko, Horn theories with non-maximal spectra, in: Model Theory and its Applications, Yu. L. Ershov (ed.), Nauka, Novosibirsk, 1988, 108-161. | Zbl 0672.03020
[00008] [9] A. Pillay, Simple superstable theories, in: Classification Theory, J. T. Baldwin (ed.), Lecture Notes in Math. 1292, Springer, Heidelberg, 1987, 247-263.
[00009] [10] K. Podewski and M. Ziegler, Stable graphs, Fund. Math. 100 (1978), 101-107. | Zbl 0407.05072
[00010] [11] A. N. Ryaskin, The number of models of complete theories of unars, in: Model Theory and its Applications, Yu. L. Ershov (ed.), Nauka, Novosibirsk, 1988, 162-182 (in Russian). | Zbl 0924.03062
[00011] [12] J. Saffe, The number of uncountable models of ω-stable theories, Ann. Pure Appl. Logic 24 (1983), 231-261. | Zbl 0518.03010
[00012] [13] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, North-Holland, Amsterdam, 1978. | Zbl 0388.03009
[00013] [14] S. Shelah, On almost categorical theories, in: Classification Theory, J. T. Baldwin (ed.), Lecture Notes in Math. 1292, Springer, Heidelberg, 1987, 498-500.