We give an example of a compact space X whose iterated continuous function spaces , are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces on compact scattered spaces with the th derived set empty, improving some earlier results of Pol [12] in this direction.
@article{bwmeta1.element.bwnjournal-article-fmv143i1p87bwm, author = {G. Sokolov}, title = {Lindel\"of property and the iterated continuous function spaces}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {87-95}, zbl = {0841.54011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i1p87bwm} }
Sokolov, G. Lindelöf property and the iterated continuous function spaces. Fundamenta Mathematicae, Tome 142 (1993) pp. 87-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i1p87bwm/
[00000] [1] A. V. Arkhangel'skiĭ, Topological Function Spaces, Moscow Univ. Press, 1989 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht 1992.
[00001] [2] K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into , Bull. Acad. Polon. Sci. 32 (1984), 681-688. | Zbl 0571.54014
[00002] [3] W. G. Fleissner, Applications of stationary sets in topology, in: Surveys in General Topology, Academic Press, 1980, 163-193.
[00003] [4] S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505-508 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1438-1442.
[00004] [5] S. P. Gul'ko, On properties of some function spaces, Dokl. Akad. Nauk SSSR 243 (1978), 839-842 (in Russian); English transl.: Soviet Math. Dokl. 19 (1978), 1420-1424.
[00005] [6] S. P. Gul'ko, On properties of function spaces, in: Seminar on General Topology, Moscow Univ. Press, 1981, 8-41 (in Russian).
[00006] [7] T. Jech, Set Theory, Academic Press, New York 1978.
[00007] [8] V. I. Malykhin, On the tightness and the Suslin number of exp X and of a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 496-499.
[00008] [9] S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam 1984, 1045-1142.
[00009] [10] O. G. Okunev, On the weak topology of conjugate spaces and the t-equivalence relation, Mat. Zametki 46 (1989), 53-59 (in Russian).
[00010] [11] Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990.
[00011] [12] R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci. 25 (1977), 993-997. | Zbl 0389.54009
[00012] [13] R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279-284. | Zbl 0424.46011
[00013] [14] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa 1971.
[00014] [15] O. V. Sipachova, The structure of iterated function spaces in the topology of pointwise convergence for Eberlein compacta, Mat. Zametki 47 (1990), 91-99 (in Russian).
[00015] [16] G. A. Sokolov, On Lindelöf spaces of continuous functions, ibid. 36 (1986), 887-894 (in Russian).
[00016] [17] E. A. Reznichenko, Convex and compact subsets of function spaces and locally convex spaces, Ph.D. thesis, Moscow Univ., 1992 (in Russian).