A new numerical invariant for the category of compact metric spaces and Lipschitz maps is introduced. This invariant takes a value less than or equal to 1 for compact metric spaces that are Lipschitz isomorphic to ultrametric ones. Furthermore, a theorem is provided which makes it possible to compute this invariant for a large class of spaces. In particular, by utilizing this invariant, it is shown that neither a fat Cantor set nor the set is Lipschitz isomorphic to an ultrametric space.
@article{bwmeta1.element.bwnjournal-article-fmv143i1p1bwm, author = {Hossein Movahedi-Lankarani}, title = {An invariant of bi-Lipschitz maps}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {1-9}, zbl = {0845.54018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i1p1bwm} }
Movahedi-Lankarani, Hossein. An invariant of bi-Lipschitz maps. Fundamenta Mathematicae, Tome 142 (1993) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i1p1bwm/
[00000] [1] G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 673-675. | Zbl 0582.54019
[00001] [2] G. Michon, Le théorème de Frostman pour les ensembles de Cantor réguliers, ibid. 305 (1987), 265-268. | Zbl 0629.28002
[00002] [3] G. Michon, Applications du théorème de Frostman à la dimension des ensembles de Cantor réguliers, ibid. 305 (1987), 689-692. | Zbl 0654.28004
[00003] [4] D. Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, in: The Mathematical Heritage of Hermann Weyl, R. O. Wells, Jr. (ed.), Proc. Sympos. Pure Math. 48, Amer. Math. Soc., Providence, R.I., 1988, 15-23.