The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, . We show: Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m, or α > ω and , then G admits a pseudocompact group topology of weight α. Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies . Theorem 5.2(b). If G is divisible Abelian with , then G admits at most -many pseudocompact group topologies. Theorem 6.2. Let or with β ≥ α, and let . Then both and the free Abelian group on γ-many generators admit exactly -many pseudocompact group topologies of weight κ. Of these, some -many form a chain and some -many form an anti-chain.
@article{bwmeta1.element.bwnjournal-article-fmv142i3p221bwm, author = {W. Comfort and I. Remus}, title = {Imposing psendocompact group topologies on Abeliau groups}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {221-240}, zbl = {0865.54035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv142i3p221bwm} }
Comfort, W.; Remus, I. Imposing psendocompact group topologies on Abeliau groups. Fundamenta Mathematicae, Tome 142 (1993) pp. 221-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv142i3p221bwm/
[00000] [Ban] B. Banaschewski, Local connectedness of extension spaces, Canad. J. Math. 8 (1956), 395-398.
[00001] [Bau] J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976), 401-439. | Zbl 0339.04003
[00002] [BCR] S. Berhanu, W. W. Comfort and J. D. Reid, Counting subgroups and topological group topologies, Pacific J. Math. 116 (1985), 217-241. | Zbl 0506.22001
[00003] [CEG] F. S. Cater, P. Erdős and F. Galvin, On the density of λ-box products, General Topology Appl. 9 (1978), 307-312. | Zbl 0394.54002
[00004] [C] W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam 1984, 1143-1263.
[00005] [CvM] W. W. Comfort and J. van Mill, Concerning connected, pseudocompact Abelian groups, Topology Appl. 33 (1989), 21-45.
[00006] [CRe1] W. W. Comfort and D. Remus, Long chains of Hausdorff topological group topologies, J. Pure Appl. Algebra 70 (1991), 53-72.
[00007] [CRe2] W. W. Comfort and D. Remus, Pseudocompact topological group topologies, Abstracts Amer. Math. Soc. 12 (1991), p. 289 [= abstract #91T-54-25].
[00008] [CRe3] W. W. Comfort and D. Remus, Pseudocompact topological group topologies on Abelian groups, ibid. 12 (1991), p. 321 [= abstract #91T-22-66].
[00009] [CRob] W. W. Comfort and L. C. Robertson, Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups, Pacific J. Math. 119 (1985), 265-285. | Zbl 0592.22005
[00010] [CRos1] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. | Zbl 0138.02905
[00011] [CRos2] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. | Zbl 0214.28502
[00012] [DS] D. N. Dikranjan and D. B. Shakhmatov, Pseudocompact topologizations of groups, Zb. Rad. (Niš) 4 (1990), 83-93. | Zbl 0705.22002
[00013] [vD] E. K. van Douwen, The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality, Proc. Amer. Math. Soc. 80 (1980), 678-682. | Zbl 0446.54011
[00014] [D] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587-594. | Zbl 0103.01702
[00015] [Fu] L. Fuchs, Infinite Abelian Groups, Vol. I, Pure Appl. Math. 36, Academic Press, New York 1970.
[00016] [GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, Graduate Texts in Math. 43, Springer, New York 1976.
[00017] [Hal] P. R. Halmos, Comment on the real line, Bull. Amer. Math. Soc. 50 (1944), 877-878. | Zbl 0061.04404
[00018] [Haw] D. Hawley, Compact group topologies for R, Proc. Amer. Math. Soc. 30 (1971), 566-572. | Zbl 0209.06001
[00019] [HI] M. Henriksen and J. R. Isbell, Local connectedness in the Stone-Čech compactification, Illinois J. Math. 1 (1957), 574-582. | Zbl 0079.38604
[00020] [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer, Berlin 1963.
[00021] [J] T. Jech, Set Theory, Academic Press, New York 1978.
[00022] [M1] M. Magidor, On the singular cardinals problem I, Israel J. Math. 28 (1977), 1-31. | Zbl 0364.02040
[00023] [M2] M. Magidor, On the singular cardinals problem II, Ann. of Math. 106 (1977), 517-547. | Zbl 0365.02057
[00024] [M] O. Masaveu, doctoral dissertation, Wesleyan University, in preparation.
[00025] [T1] M. G. Tkachenko, On pseudocompact topological groups, Interim Report of the Prague Topological Symposium 2/1987 (1987), p. 18, Czechoslovak Acad. Sci., Prague 1987.
[00026] [T2] M. G. Tkachenko, Countably compact and pseudocompact topologies on free Abelian groups, Soviet Math. (Izv. VUZ) 34 (1990), 79-86. Russian original: Izv. Vyssh. Uchebn. Zaved. Mat. 1990 (5) (336), 68-75. | Zbl 0714.22001
[00027] [We] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Publ. Math. Univ. Strasbourg, Hermann, Paris 1937. | Zbl 63.0569.04
[00028] [Wu] D. E. Wulbert, A characterization of C(X) for locally connected X, Proc. Amer. Math. Soc. 21 (1969), 269-272. | Zbl 0174.25603