On linear operators and functors extending pseudometrics
Bessaga, C.
Fundamenta Mathematicae, Tome 142 (1993), p. 101-122 / Harvested from The Polish Digital Mathematics Library

For some pairs (X,A), where X is a metrizable topological space and A its closed subset, continuous, linear (i.e., additive and positive-homogeneous) operators extending metrics for A to metrics for X are constructed. They are defined by explicit analytic formulas, and also regarded as functors between certain categories. An essential role is played by "squeezed cones" related to the classical cone construction. The main result: if A is a nondegenerate absolute neighborhood retract for metric spaces, then continuous linear operators extending metrics always exist.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:211975
@article{bwmeta1.element.bwnjournal-article-fmv142i2p101bwm,
     author = {C. Bessaga},
     title = {On linear operators and functors extending pseudometrics},
     journal = {Fundamenta Mathematicae},
     volume = {142},
     year = {1993},
     pages = {101-122},
     zbl = {0847.54033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv142i2p101bwm}
}
Bessaga, C. On linear operators and functors extending pseudometrics. Fundamenta Mathematicae, Tome 142 (1993) pp. 101-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv142i2p101bwm/

[00000] [AS] R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330. | Zbl 0187.20505

[00001] [AD] P. Assouad and M. Deza, Metric subspaces of L1, Publ. Math. Orsay 3 (1982), 47 pp. | Zbl 0478.05021

[00002] [Av] D. Avis, Hypermetric spaces and the Hamming cone, Canad. J. Math. 33 (1981), 795-802. | Zbl 0445.52008

[00003] [AM] D. Avis and Mutt, All the facets of the six-point Hamming cone, European J. Combin. 10 (1989), 309-312. | Zbl 0686.52001

[00004] [B] C. Bessaga, Functional analytic aspects of geometry. Linear extending of metrics and related problems, in: Progress in Functional Analysis, Proceedings of the Peniscola Meeting 1990 on the occasion of the 60th birthday of Professor M. Valdivia, North-Holland Math. Stud. 170, North-Holland, Amsterdam 1992, 247-257. | Zbl 0771.54027

[00005] [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.

[00006] [Bo] K. Borsuk, Über Isomorphie der Funktionalräume, Bull. Internat. Acad. Polon. Sér. A 1933, 1-10. | Zbl 0007.25201

[00007] [Bor] K. Borsuk, Theory of Retracts, PWN, Warszawa 1967.

[00008] [] K. Borsuk, Theory of Shape, PWN, Warszawa 1975.

[00009] [D] M. Deza (Tylkin), On Hamming geometry of unitary cubes, Dokl. Akad. Nauk SSSR 134 (1960), 1037-1040 (in Russian).

[00010] [De] M. Deza (Tylkin), Matrices des formes quadratiques non négatives pour des arguments binaires, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A873-A875. | Zbl 0275.05014

[00011] [Du] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. | Zbl 0043.38105

[00012] [H] F. Hausdorff, Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353-360. | Zbl 56.0508.03

[00013] [K] J. B. Kelly, Metric inequalities and symmetric differences, in: Inequalities II, Academic Press, New York 1970, 193-212.

[00014] [Ke] J. B. Kelly, Hypermetric spaces, in: The Geometry of Metric and Linear Spaces, Lecture Notes in Math. 490, Springer, 1975, 17-31.

[00015] [L] J. Luukkainen, Extension of spaces, maps, and metrics in Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 17 (1978), 1-62. | Zbl 0396.54025

[00016] [N] Nguyen To Nhu, Extending metrics uniformly, Colloq. Math. 43 (1980), 91-97. | Zbl 0459.54019

[00017] [KN] Nguyen Van Khue and Nguyen To Nhu, Two extensors of metrics, Bull. Acad. Polon. Sci. 29 (1981), 285-291. | Zbl 0466.54026

[00018] [T] H. Toruńczyk, A short proof of Hausdorff's theorem on extending metrics, Fund. Math. 77 (1972), 191-193. | Zbl 0248.54035