Under the assumption that the real line cannot be covered by -many nowhere dense sets, it is shown that (a) no Čech-complete space can be partitioned into -many closed nowhere dense sets; (b) no Hausdorff continuum can be partitioned into -many closed sets; and (c) no compact Hausdorff space can be partitioned into -many closed -sets.
@article{bwmeta1.element.bwnjournal-article-fmv142i1p89bwm, author = {Gary Gruenhage}, title = {Partitions of compact Hausdorff spaces}, journal = {Fundamenta Mathematicae}, volume = {142}, year = {1993}, pages = {89-100}, zbl = {0814.54015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv142i1p89bwm} }
Gruenhage, Gary. Partitions of compact Hausdorff spaces. Fundamenta Mathematicae, Tome 142 (1993) pp. 89-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv142i1p89bwm/
[00000] [A1] A. V. Arkhangel'skiĭ, On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951-955.
[00001] [A2] A. V. Arkhangel'skiĭ, Theorems on the cardinality of families of sets in compact Hausdorff spaces, ibid. 17 (1976), 213-217.
[00002] [DP] A. Dow and J. Porter, Cardinalities of H-closed spaces, Topology Proc. 7 (1982), 27-50. | Zbl 0569.54004
[00003] [E] R. Engelking, General Topology, Heldermann, Berlin 1989.
[00004] [FS] D. H. Fremlin and S. Shelah, On partitions of the real line, Israel J. Math. 32 (1979), 299-304. | Zbl 0413.04002
[00005] [K] K. Kunen, Set Theory, North-Holland, Amsterdam 1980.
[00006] [M] A. W. Miller, Covering with disjoint closed sets, in: The Kleene Symposium, J. Barwise, J. Keisler, and K. Kunen (eds.), North-Holland, 1980, 415-421.
[00007] [N] P. J. Nyikos, A supercompact topology for trees, preprint.
[00008] [S] W. Sierpiński, Un théorème sur les continus, Tôhoku Math. J. 13 (1918), 300-303. | Zbl 46.0299.03
[00009] [SV] P. Štěpánek and P. Vopěnka, Decomposition of metric spaces into nowhere dense sets, Comment. Math. Univ. Carolin. 8 (1967), 387-404. | Zbl 0179.27803
[00010] [T] S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 235-293.
[00011] [W] S. Watson, Problem Session at the Spring Topology Conference, Univ. of Calif. at Sacramento, April, 1991.