Some dynamical properties of S-unimodal maps
Nowicki, Tomasz
Fundamenta Mathematicae, Tome 142 (1993), p. 45-57 / Harvested from The Polish Digital Mathematics Library

We study 1) the slopes of central branches of iterates of S-unimodal maps, comparing them to the derivatives on the critical trajectory, 2) the hyperbolic structure of Collet-Eckmann maps estimating the exponents, and under a summability condition 3) the images of the density one under the iterates of the Perron-Frobenius operator, 4) the density of the absolutely continuous invariant measure.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:211971
@article{bwmeta1.element.bwnjournal-article-fmv142i1p45bwm,
     author = {Tomasz Nowicki},
     title = {Some dynamical properties of S-unimodal maps},
     journal = {Fundamenta Mathematicae},
     volume = {142},
     year = {1993},
     pages = {45-57},
     zbl = {0821.58025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv142i1p45bwm}
}
Nowicki, Tomasz. Some dynamical properties of S-unimodal maps. Fundamenta Mathematicae, Tome 142 (1993) pp. 45-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv142i1p45bwm/

[00000] [BL] A. Blokh and M. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. 24 (1991), 545-573. | Zbl 0790.58024

[00001] [CE1] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston 1980. | Zbl 0458.58002

[00002] [CE2] P. Collet and J.-P. Eckmann, Positive Liapounov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynamical Systems 3 (1983), 13-46. | Zbl 0532.28014

[00003] [K] G. Keller, Exponents, attractors and Hopf decomposition for interval maps, ibid. 10 (1990), 717-744. | Zbl 0715.58020

[00004] [KN] G. Keller and T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for the Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), 31-69. | Zbl 0763.58024

[00005] [L] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynamical Systems 1 (1981), 77-93. | Zbl 0487.28015

[00006] [MS] W. de Melo and S. van Strien, One Dimensional Dynamic, book manuscript.

[00007] [M] M. Misiurewicz, Absolutely continuous invariant measures for certain maps of an interval, Publ. Math. I.H.E.S. 53 (1981), 17-51. | Zbl 0477.58020

[00008] [N1] T. Nowicki, On some dynamical properties of S-unimodal maps of an interval, Fund. Math. 126 (1985), 27-43. | Zbl 0608.58030

[00009] [N2] T. Nowicki, Symmetric S-unimodal mappings and positive Liapunov exponents, Ergodic Theory Dynamical Systems 5 (1985), 611-616. | Zbl 0615.28009

[00010] [N3] T. Nowicki, A positive Liapunov exponent for the critical value of an S-unimodal mapping implies uniform hyperbolicity, ibid. 8 (1988), 425-435. | Zbl 0638.58021

[00011] [NS1] T. Nowicki and S. van Strien, Hyperbolicity properties of multimodal Collet-Eckmann maps without Schwarzian derivative conditions, Trans. Amer. Math. Soc. 321 (1990), 793-810. | Zbl 0731.58021

[00012] [NS2] T. Nowicki and S. van Strien, Absolutely continuous invariant measures for C2 unimodal maps satisfying Collet-Eckmann conditions, Invent. Math. 93 (1988), 619-635. | Zbl 0659.58034

[00013] [NS3] T. Nowicki and S. van Strien, Invariant measures exist under a summability condition for unimodal maps, ibid. 105 (1991), 123-136. | Zbl 0736.58030

[00014] [Sz] B. Szewc, Perron-Frobenius operator in spaces of smooth functions on an interval, Ergodic Theory Dynamical Systems 4 (1984), 613-641.

[00015] [Y] L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math. Phys. 146 (1992), 123-138. | Zbl 0760.58030