Exactly two-to-one maps from continua onto some tree-like continua
Dębski, Wojciech ; Heath, J. ; Mioduszewski, J.
Fundamenta Mathematicae, Tome 141 (1992), p. 269-276 / Harvested from The Polish Digital Mathematics Library

It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated by S. Nadler Jr. and L. E. Ward Jr. (1983), is still neither confirmed nor rejected.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211965
@article{bwmeta1.element.bwnjournal-article-fmv141i3p269bwm,
     author = {Wojciech D\k ebski and J. Heath and J. Mioduszewski},
     title = {Exactly two-to-one maps from continua onto some tree-like continua},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {269-276},
     zbl = {0807.54015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p269bwm}
}
Dębski, Wojciech; Heath, J.; Mioduszewski, J. Exactly two-to-one maps from continua onto some tree-like continua. Fundamenta Mathematicae, Tome 141 (1992) pp. 269-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p269bwm/

[00000] [1] D. Fox, k-to-1 continuous transformations, Dissertation, Univ. of California at Riverside, 1973.

[00001] [2] W. H. Gottschalk, On k-to-1 transformations, Bull. Amer. Math. Soc. 53 (1947), 168-169. | Zbl 0040.25402

[00002] [3] J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only (I), Houston J. Math. 5 (1979), 483-501. | Zbl 0412.54039

[00003] [4] J. Heath, Tree-like continua and exactly k-to-1 functions, Proc. Amer. Math. Soc. 105 (1989), 765-772. | Zbl 0664.54008

[00004] [5] J. Heath, 2-to-1 maps with hereditarily indecomposable images, ibid. 113 (1991), 839-846. | Zbl 0738.54012

[00005] [6] W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), 99-107. | Zbl 0244.54023

[00006] [7] T. Maćkowiak, Semiconfluent mappings and their invariants, ibid. 79 (1973), 251-264. | Zbl 0261.54011

[00007] [8] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly (n,1) images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. | Zbl 0503.54018