We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
@article{bwmeta1.element.bwnjournal-article-fmv141i3p243bwm, author = {Sam Nadler and T. West}, title = {Size levels for arcs}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {243-255}, zbl = {0856.54034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p243bwm} }
Nadler, Sam; West, T. Size levels for arcs. Fundamenta Mathematicae, Tome 141 (1992) pp. 243-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p243bwm/
[00000] [EN] C. Eberhart and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1071-1034. | Zbl 0235.54037
[00001] [K] K. Kuratowski, Topology, Vol. II, Academic Press, New York 1966.
[00002] [N1] S. B. Nadler, Jr.. Hyperspaces of Sets, Marcel Dekker, New York 1978.
[00003] [N2] S. B. Nadler, Some problems concerning hyperspaces, in: Topology Conference (V.P.I. and S.U.), R. F. Dickman, Jr. and P. Fletcher (eds.), Lecture Notes in Math. 375, Springer, New York 1974, 190-197.
[00004] [P] A. Petrus, Contractibility of Whitney continua in C(X), General Topology Appl. 9 (1978), 275-288. | Zbl 0405.54006
[00005] [W] G. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Amer. Math. Soc., Providence, R.I., 1949. | Zbl 0117.15804