We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
@article{bwmeta1.element.bwnjournal-article-fmv141i3p229bwm, author = {Micha\l\ Morayne}, title = {Algebras of Borel measurable functions}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {229-242}, zbl = {0812.26004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p229bwm} }
Morayne, Michał. Algebras of Borel measurable functions. Fundamenta Mathematicae, Tome 141 (1992) pp. 229-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p229bwm/
[00000] [CM] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89. | Zbl 0646.26009
[00001] [CMPS] J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283. | Zbl 0742.04003
[00002] [H] F. Hausdorff, Set Theory, Chelsea, New York 1962.
[00003] [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73. | Zbl 48.0276.04
[00004] [Ku] K. Kuratowski, Topology I, Academic Press, New York 1966.
[00005] [L] A. Lindenbaum, Sur les superpositions de fonctions represéntables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304. | Zbl 60.0195.02
[00006] [Ma] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, ibid. 68 (1970), 51-59.
[00007] [Mo] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980.
[00008] [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, Fund. Math. 2 (1921), 15-27. | Zbl 48.0276.01
[00009] [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid., 37-40. | Zbl 48.0276.03