Algebras of Borel measurable functions
Morayne, Michał
Fundamenta Mathematicae, Tome 141 (1992), p. 229-242 / Harvested from The Polish Digital Mathematics Library

We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211962
@article{bwmeta1.element.bwnjournal-article-fmv141i3p229bwm,
     author = {Micha\l\ Morayne},
     title = {Algebras of Borel measurable functions},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {229-242},
     zbl = {0812.26004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p229bwm}
}
Morayne, Michał. Algebras of Borel measurable functions. Fundamenta Mathematicae, Tome 141 (1992) pp. 229-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv141i3p229bwm/

[00000] [CM] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89. | Zbl 0646.26009

[00001] [CMPS] J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283. | Zbl 0742.04003

[00002] [H] F. Hausdorff, Set Theory, Chelsea, New York 1962.

[00003] [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73. | Zbl 48.0276.04

[00004] [Ku] K. Kuratowski, Topology I, Academic Press, New York 1966.

[00005] [L] A. Lindenbaum, Sur les superpositions de fonctions represéntables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304. | Zbl 60.0195.02

[00006] [Ma] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, ibid. 68 (1970), 51-59.

[00007] [Mo] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980.

[00008] [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, Fund. Math. 2 (1921), 15-27. | Zbl 48.0276.01

[00009] [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid., 37-40. | Zbl 48.0276.03