We prove that in some families of planar rational compacta there are no universal elements.
@article{bwmeta1.element.bwnjournal-article-fmv141i2p109bwm,
author = {S. Iliadis and S. Zafiridou},
title = {Planar rational compacta and universality},
journal = {Fundamenta Mathematicae},
volume = {141},
year = {1992},
pages = {109-118},
zbl = {0799.54024},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv141i2p109bwm}
}
Iliadis, S.; Zafiridou, S. Planar rational compacta and universality. Fundamenta Mathematicae, Tome 141 (1992) pp. 109-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv141i2p109bwm/
[00000] [I] S. D. Iliadis, The rim-type of spaces and the property of universality, Houston J. Math. 13 (1987), 373-388. | Zbl 0655.54025
[00001] [K] J. L. Kelley, General Topology, Van Nostrand, Princeton 1957.
[00002] [Ku] K. Kuratowski, Topology, Vols. I, II, Academic Press, New York 1966, 1968.
[00003] [M-T] J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990). | Zbl 0721.54022
[00004] [M-S] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27. | Zbl 47.0176.01
[00005] [N] G. Nöbeling, Über regular-eindimensionale Räume, Math. Ann. 104 (1931), 81-91. | Zbl 56.0506.03