Open subspaces of countable dense homogeneous spaces
Watson, Stephen ; Simon, Petr
Fundamenta Mathematicae, Tome 141 (1992), p. 101-108 / Harvested from The Polish Digital Mathematics Library

We construct a completely regular space which is connected, locally connected and countable dense homogeneous but not strongly locally homogeneous. The space has an open subset which has a unique cut-point. We use the construction of a C1-diffeomorphism of the plane which takes one countable dense set to another.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211955
@article{bwmeta1.element.bwnjournal-article-fmv141i2p101bwm,
     author = {Stephen Watson and Petr Simon},
     title = {Open subspaces of countable dense homogeneous spaces},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {101-108},
     zbl = {0770.54017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv141i2p101bwm}
}
Watson, Stephen; Simon, Petr. Open subspaces of countable dense homogeneous spaces. Fundamenta Mathematicae, Tome 141 (1992) pp. 101-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv141i2p101bwm/

[00000] [1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York 1953. | Zbl 0052.07002

[00001] [2] R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), 311-321.

[00002] [3] J. W. Bales, Representable and strongly locally homogeneous spaces and strongly n-homogeneous spaces, Houston J. Math. 2 (1976), 315-327. | Zbl 0341.54047

[00003] [4] K. F. Barth and W. J. Schneider, Entire functions mapping arbitrary countable dense sets and their complements onto each other, J. London Math. Soc. 4 (1971/72), 482-488. | Zbl 0228.30020

[00004] [5] K. F. Barth and W. J. Schneider, Entire functions mapping countable dense subsets of the reals onto each other monotonically, ibid. 2 (1970), 620-626. | Zbl 0201.09203

[00005] [6] R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194. | Zbl 0227.54020

[00006] [7] R. B. Burckel and S. Saeki, Additive mappings on rings of holomorphic functions, Proc. Amer. Math. Soc. 89 (1983), 79-85. | Zbl 0532.30040

[00007] [8] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 46 (1895), 481-512. | Zbl 26.0081.01

[00008] [9] J. de Groot, Topological Hilbert space and the drop-out effect, Technical Report zw-1969, Math. Centrum, Amsterdam 1969. | Zbl 0199.25702

[00009] [10] T. Dobrowolski, On smooth countable dense homogeneity, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 627-634. | Zbl 0332.58005

[00010] [11] C. Eberhart, Some remarks on the irrational and rational numbers, Amer. Math. Monthly 84 (1977), 32-35. | Zbl 0358.54019

[00011] [12] P. Erdős, Problem 2.31, in: Research Problems in Function Theory, W. K. Haymann (ed.), Athlone Press, London 1967.

[00012] [13] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.

[00013] [14] B. Fitzpatrick, Jr., A note on countable dense homogeneity, Fund. Math. 75 (1972), 33-34.

[00014] [15] B. Fitzpatrick, Jr., and H.-X. Zhou, Densely homogeneous spaces (II), Houston J. Math. 14 (1988), 57-68. | Zbl 0677.54014

[00015] [16] B. Fitzpatrick, Some open problems in densely homogeneous spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990, 251-259.

[00016] [17] B. Fitzpatrick, Jr., and N. F. Lauer, Densely homogeneous spaces (I), Houston J. Math. 13 (1987), 19-25. | Zbl 0635.54009

[00017] [18] P. Fletcher and R. A. McCoy, Conditions under which a connected representable space is locally connected, Pacific J. Math. 51 (1974), 433-437. | Zbl 0293.54013

[00018] [19] L. R. Ford, Jr., Homeomorphism groups and coset spaces, Trans. Amer. Math. Soc. 77 (1954), 490-497. | Zbl 0058.17302

[00019] [20] M. K. Fort, Jr., Homogeneity of infinite products of manifolds with boundary, Pacific J. Math. 12 (1962), 879-884. | Zbl 0112.38004

[00020] [21] P. Franklin, Analytic transformations of everywhere dense point sets, Trans. Amer. Math. Soc. 27 (1925), 91-100. | Zbl 51.0166.01

[00021] [22] F. Gross, Research problem 19, Bull. Amer. Math. Soc. 71 (1965), 853.

[00022] [23] F. D. Hammer and W. Knight, Problem and solution 5955, Amer. Math. Monthly 82 (1975), 415-416.

[00023] [24] K. Kuperberg, W. Kuperberg and W. R. R. Transue, On the 2-homogeneity of Cartesian products, Fund. Math. 110 (1980), 131-134. | Zbl 0475.54025

[00024] [25] W. D. Maurer, Conformal equivalence of countable dense sets, Proc. Amer. Math. Soc. 18 (1967), 269-270. | Zbl 0189.36204

[00025] [26] Z. A. Melzak, Existence of certain analytic homeomorphisms, Canad. Math. Bull. 2 (1959), 71-75. | Zbl 0089.27603

[00026] [27] M. Morayne, Measure preserving analytic diffeomorphisms of countable dense sets in Cn and n, Colloq. Math. 52 (1987), 93-98. | Zbl 0627.28012

[00027] [28] B. H. Neumann and R. Rado, Monotone functions mapping the set of rational numbers onto itself, J. Austral. Math. Soc. 3 (1963), 282-287. | Zbl 0136.35103

[00028] [29] J. W. Nienhuys and J. G. F. Thiemann, On the existence of entire functions mapping countable dense sets onto each other, Indag. Math. 38 (1976), 331-334. | Zbl 0336.30009

[00029] [30] D. Ravdin, Various types of local homogeneity, Pacific J. Math. 50 (1974), 589-594. | Zbl 0295.54048

[00030] [31] W. L. Saltsman, Some homogeneity problems in point set theory, Ph.D. thesis, Auburn University, 1989.

[00031] [32] D. Sato and S. Rankin, Entire functions mapping countable dense subsets of the reals onto each other monotonically, Bull. Austral. Math. Soc. 10 (1974), 67-70. | Zbl 0275.30020

[00032] [33] P. Stäckel, Ueber arithmetische Eigenschaften analytischer Functionen, Math. Ann. 46 (1895), 513-520.

[00033] [34] J. Steprāns and S. Watson, Homeomorphisms of manifolds with prescribed behaviour on large dense sets, Bull. London Math. Soc. 19 (1987), 305-310. | Zbl 0637.03051

[00034] [35] J. Steprāns and H. X. Zhou, Some results on CDH spaces - I, Topology Appl. 28 (1988), 147-154. | Zbl 0647.54017

[00035] [36] E. Strauss, Problem 6, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Amer. Math. Soc., Providence, R.I., 1968, 534.

[00036] [37] G. S. Ungar, Countable dense homogeneity and n-homogeneity, Fund. Math. 99 (1978), 155-160. | Zbl 0392.54017

[00037] [38] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982), 143-148. | Zbl 0486.54012

[00038] [39] S. Watson, The homogeneity of small manifolds, Topology Proc. 13 (1990), 365-370. | Zbl 0697.57008