In [2] the question was considered in how many directions can a nonmeasurable plane set behave even "better" than the classical one constructed by Sierpiński in [6], in the sense that any line in a given direction intersects the set in at most one point. We considerably improve these results and give a much sharper estimate for the size of the sets of those "better" directions.
@article{bwmeta1.element.bwnjournal-article-fmv140i3p237bwm, author = {B. Kirchheim and Tomasz Natkaniec}, title = {Exceptional directions for Sierpi\'nski's nonmeasurable sets}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {237-245}, zbl = {0757.28003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p237bwm} }
Kirchheim, B.; Natkaniec, Tomasz. Exceptional directions for Sierpiński's nonmeasurable sets. Fundamenta Mathematicae, Tome 141 (1992) pp. 237-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p237bwm/
[00000] [1] D. L. Cohn, Measure Theory, Birkhäuser, 1980.
[00001] [2] M. Frantz, On Sierpiński's nonmeasurable set, Fund. Math. 139 (1991), 17-22. | Zbl 0757.28002
[00002] [3] A. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114. | Zbl 0472.03040
[00003] [4] J. Oxtoby, Measure and Category, Springer, 1971.
[00004] [5] J. Shoenfield, Martin's Axiom, Amer. Math. Monthly 82 (1975), 610-617. | Zbl 0314.02069
[00005] [6] W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), 112-115. | Zbl 47.0180.04
[00006] [7] U. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-75.