Exceptional directions for Sierpiński's nonmeasurable sets
Kirchheim, B. ; Natkaniec, Tomasz
Fundamenta Mathematicae, Tome 141 (1992), p. 237-245 / Harvested from The Polish Digital Mathematics Library

In [2] the question was considered in how many directions can a nonmeasurable plane set behave even "better" than the classical one constructed by Sierpiński in [6], in the sense that any line in a given direction intersects the set in at most one point. We considerably improve these results and give a much sharper estimate for the size of the sets of those "better" directions.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211943
@article{bwmeta1.element.bwnjournal-article-fmv140i3p237bwm,
     author = {B. Kirchheim and Tomasz Natkaniec},
     title = {Exceptional directions for Sierpi\'nski's nonmeasurable sets},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {237-245},
     zbl = {0757.28003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p237bwm}
}
Kirchheim, B.; Natkaniec, Tomasz. Exceptional directions for Sierpiński's nonmeasurable sets. Fundamenta Mathematicae, Tome 141 (1992) pp. 237-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p237bwm/

[00000] [1] D. L. Cohn, Measure Theory, Birkhäuser, 1980.

[00001] [2] M. Frantz, On Sierpiński's nonmeasurable set, Fund. Math. 139 (1991), 17-22. | Zbl 0757.28002

[00002] [3] A. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114. | Zbl 0472.03040

[00003] [4] J. Oxtoby, Measure and Category, Springer, 1971.

[00004] [5] J. Shoenfield, Martin's Axiom, Amer. Math. Monthly 82 (1975), 610-617. | Zbl 0314.02069

[00005] [6] W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), 112-115. | Zbl 47.0180.04

[00006] [7] U. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-75.