We will construct weakly infinite-dimensional (in the sense of Y. Smirnov) spaces X and Y such that Y contains X topologically and and . Consequently, the subspace theorem does not hold for the transfinite dimension dim for weakly infinite-dimensional spaces.
@article{bwmeta1.element.bwnjournal-article-fmv140i3p225bwm, author = {P. Borst}, title = {On weakly infinite-dimensional subspuees}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {225-235}, zbl = {0771.54032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p225bwm} }
Borst, P. On weakly infinite-dimensional subspuees. Fundamenta Mathematicae, Tome 141 (1992) pp. 225-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p225bwm/
[00000] [B1] P. Borst, Classification of weakly infinite-dimensional spaces. Part I: A transfinite extension of the covering dimension, Fund. Math. 130 (1988), 1-25. | Zbl 0661.54035
[00001] [B2] P. Borst, Classification of weakly infinite-dimensional spaces. Part II: Essential mappings, ibid., 73-99. | Zbl 0661.54036
[00002] [Ch] V. A. Chatyrko, On the transfinite dimension dim, to appear. | Zbl 0774.54024
[00003] [E1] R. Engelking, General Topology, PWN, Warszawa 1977.
[00004] [E2] R. Engelking, Dimension Theory, PWN, Warszawa 1978.
[00005] [He] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173. | Zbl 0167.51301
[00006] [L] L. A. Lyuksemburg, On transfinite inductive dimensions, Soviet Math. Dokl. 14 (1973), 388-393. | Zbl 0283.54019
[00007] [P] R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), 169-188. | Zbl 0571.54030