The universal separable metric space of Urysohn and isometric embeddings thereof in Вanach spaces
Holmes, M.
Fundamenta Mathematicae, Tome 141 (1992), p. 199-223 / Harvested from The Polish Digital Mathematics Library

This paper is an investigation of the universal separable metric space up to isometry U discovered by Urysohn. A concrete construction of U as a metric subspace of the space C[0,1] of functions from [0,1] to the reals with the supremum metric is given. An answer is given to a question of Sierpiński on isometric embeddings of U in C[0,1]. It is shown that the closed linear span of an isometric copy of U in a Banach space which contains the zero of the Banach space is determined up to linear isometry. The question of what Banach spaces can be embedded in a linear isometric fashion in this uniquely determined closed linear span of U is investigated.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211941
@article{bwmeta1.element.bwnjournal-article-fmv140i3p199bwm,
     author = {M. Holmes},
     title = {The universal separable metric space of Urysohn and isometric embeddings thereof in Vanach spaces},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {199-223},
     zbl = {0772.54022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p199bwm}
}
Holmes, M. The universal separable metric space of Urysohn and isometric embeddings thereof in Вanach spaces. Fundamenta Mathematicae, Tome 141 (1992) pp. 199-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i3p199bwm/

[00000] [B] S. Banach, Théorie des Opérations Linéaires, Hafner, New York 1932, p. 185. | Zbl 0005.20901

[00001] [B-P] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-dimensional Topology, Monograf. Mat. 58, Polish Scientific Publishers, Warszawa 1975, pp. 48-51. | Zbl 0304.57001

[00002] [G] B. Grünbaum, Convex Polytopes, Wiley, London 1967, pp. 72-73.

[00003] [H] G. E. Huhunaishvili, A property of the universal metric space of Urysohn, Dokl. Akad. Nauk SSSR 101 (1955), 607-610 (in Russian).

[00004] [J] C. Joiner, On Urysohn's universal separable metric space, Fund. Math. 73 (1971), 51-58. | Zbl 0223.54015

[00005] [L] J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488-499. | Zbl 0132.09803

[00006] [S] W. Sierpiński, Sur un espace métrique séparable universel, Fund. Math. 33 (1945), 115-122. Also see his General Topology, Univ. of Toronto Press, Toronto 1952, pp. 159-162. | Zbl 0061.40001

[00007] [U] P. Urysohn, Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43-64, 74-90. | Zbl 53.0556.01

[00008] [Z] M. Ziegler, Ein problem von Urysohn, preprint, 1978.