We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and .
@article{bwmeta1.element.bwnjournal-article-fmv140i2p99bwm, author = {Jerzy Jezierski}, title = {The semi-index product formula}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {99-120}, zbl = {0811.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p99bwm} }
Jezierski, Jerzy. The semi-index product formula. Fundamenta Mathematicae, Tome 141 (1992) pp. 99-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p99bwm/
[00000] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen number on non-orientable manifolds, Rocky Mountain J. Math., to appear. | Zbl 0787.55003
[00001] [H] M. Hirsch, Differential Topology, Springer, New York 1976.
[00002] [Je] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002
[00003] [J] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, R.I., 1983. | Zbl 0512.55003
[00004] [V] J. Vick, Homology Theory, Academic Press, New York 1976.
[00005] [W] J. A. Wolf, Spaces of Constant Curvature, Univ. of California, Berkeley 1972.
[00006] [Y] C. Y. You, Fixed points of a fibre map, Pacific J. Math. 100 (1982), 217-241.