The semi-index product formula
Jezierski, Jerzy
Fundamenta Mathematicae, Tome 141 (1992), p. 99-120 / Harvested from The Polish Digital Mathematics Library

We consider fibre bundle maps (...) where all spaces involved are smooth closed manifolds (with no orientability assumption). We find a necessary and sufficient condition for the formula    |ind|(f,g:A) = |ind| (f̅,g̅: p(A)) |ind| (fb,gb:p-1(b)A) to hold, where A stands for a Nielsen class of (f,g), b ∈ p(A) and |ind| denotes the coincidence semi-index from [DJ]. This formula enables us to derive a relation between the Nielsen numbers N(f,g), N(f̅,g̅) and N(fb,gb).

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211940
@article{bwmeta1.element.bwnjournal-article-fmv140i2p99bwm,
     author = {Jerzy Jezierski},
     title = {The semi-index product formula},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {99-120},
     zbl = {0811.55003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p99bwm}
}
Jezierski, Jerzy. The semi-index product formula. Fundamenta Mathematicae, Tome 141 (1992) pp. 99-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p99bwm/

[00000] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen number on non-orientable manifolds, Rocky Mountain J. Math., to appear. | Zbl 0787.55003

[00001] [H] M. Hirsch, Differential Topology, Springer, New York 1976.

[00002] [Je] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002

[00003] [J] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, R.I., 1983. | Zbl 0512.55003

[00004] [V] J. Vick, Homology Theory, Academic Press, New York 1976.

[00005] [W] J. A. Wolf, Spaces of Constant Curvature, Univ. of California, Berkeley 1972.

[00006] [Y] C. Y. You, Fixed points of a fibre map, Pacific J. Math. 100 (1982), 217-241.