Definable hereditary families in the projective hierarchy
Barua, R. ; Srivatsa, V.
Fundamenta Mathematicae, Tome 141 (1992), p. 183-189 / Harvested from The Polish Digital Mathematics Library

We show that if ℱ is a hereditary family of subsets of ωω satisfying certain definable conditions, then the Δ11 reals are precisely the reals α such that β:αΔ11(β). This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the Q2n+1-encodable reals is also shown.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211937
@article{bwmeta1.element.bwnjournal-article-fmv140i2p183bwm,
     author = {R. Barua and V. Srivatsa},
     title = {Definable hereditary families in the projective hierarchy},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {183-189},
     zbl = {0809.04003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p183bwm}
}
Barua, R.; Srivatsa, V. Definable hereditary families in the projective hierarchy. Fundamenta Mathematicae, Tome 141 (1992) pp. 183-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p183bwm/

[00000] [1] A. S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1973), 337-384. | Zbl 0277.02019

[00001] [2] A. S. Kechris, The theory of countable analytical sets, Trans. Amer. Math. Soc. 202 (1975), 259-267. | Zbl 0317.02082

[00002] [3] A. S. Kechris, Effective Ramsey theorems in the projective hierarchy, in: Proceedings of the Herbrand Symposium, J. Stern (ed.), North-Holland, Amsterdam 1982. | Zbl 0507.03023

[00003] [4] A. S. Kechris, D. A. Martin and R. M. Solovay, Introduction to Q-theory, in: Cabal Seminar 79-81 (Proceedings, Caltech-UCLA Logic Seminar, 1979-81), Lecture Notes in Math. 1019, Springer, 1983, 199-281.

[00004] [5] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980.

[00005] [6] L. Piątkiewicz, A remark about separation of K-analytic sets in the product spaces, Proc. Amer. Math. Soc. 93 (1985), 363-366. | Zbl 0552.54028

[00006] [7] R. M. Solovay, Hyperarithmetically encodable sets, Trans. Amer. Math. Soc. 239 (1978), 99-122. | Zbl 0411.03039