On reflection of stationary sets
Feng, Q. ; Magidor, Menachem
Fundamenta Mathematicae, Tome 141 (1992), p. 175-181 / Harvested from The Polish Digital Mathematics Library

We show that there are stationary subsets of uncountable spaces which do not reflect.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211936
@article{bwmeta1.element.bwnjournal-article-fmv140i2p175bwm,
     author = {Q. Feng and Menachem Magidor},
     title = {On reflection of stationary sets},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {175-181},
     zbl = {0809.03034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p175bwm}
}
Feng, Q.; Magidor, Menachem. On reflection of stationary sets. Fundamenta Mathematicae, Tome 141 (1992) pp. 175-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p175bwm/

[00000] [1] W. Flessner, private communication.

[00001] [2] M. Foreman, M. Magidor and S. Shelah, Martin's maximum, saturated ideals, and nonregular ultrafilters. Part I, Ann. of Math. 127 (1988), 1-47.

[00002] [3] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198. | Zbl 0262.02062

[00003] [4] T. Jech, Set Theory, Academic Press, 1978.