A characterization of dendroids by the n-connectedness of the Whitney levels
Illanes, Alejandro
Fundamenta Mathematicae, Tome 141 (1992), p. 157-174 / Harvested from The Polish Digital Mathematics Library

Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:211935
@article{bwmeta1.element.bwnjournal-article-fmv140i2p157bwm,
     author = {Alejandro Illanes},
     title = {A characterization of dendroids by the n-connectedness of the Whitney levels},
     journal = {Fundamenta Mathematicae},
     volume = {141},
     year = {1992},
     pages = {157-174},
     zbl = {0805.54031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p157bwm}
}
Illanes, Alejandro. A characterization of dendroids by the n-connectedness of the Whitney levels. Fundamenta Mathematicae, Tome 141 (1992) pp. 157-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p157bwm/

[00000] [1] C. Eberhart and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034. | Zbl 0235.54037

[00001] [2] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112. | Zbl 0013.42002

[00002] [3] A. Illanes, Arc-smoothness and contractibility in Whitney levels, Proc. Amer. Math. Soc. 110 (1990), 1069-1074. | Zbl 0707.54008

[00003] [4] A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77. | Zbl 0674.54012

[00004] [5] A. Illanes, The space of Whitney levels, Topology Appl., to appear. | Zbl 0761.54010

[00005] [6] A. Illanes, Spaces of Whitney decompositions, An. Inst. Mat. Univ. Nac. Autónoma México 28 (1988), 47-61.

[00006] [7] A. Illanes, The space of Whitney levels is homeomorphic to l2, Colloq. Math., to appear. | Zbl 0819.54016

[00007] [8] A. Illanes, Arc smoothness is not a Whitney reversible property, Aportaciones Mat.: Comun. 8 (1990), 65-80.

[00008] [9] J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165-180.

[00009] [10] S. Mardešić, Equivalence of singular and Čech homology for ANR-s. Application to unicoherence, ibid. 46 (1958), 29-45. | Zbl 0085.37303

[00010] [11] S. B. Nadler, Jr., Some basic connectivity properties of Whitney maps inverses in C(X), in: Studies in Topology, Proc. Charlotte Topology Conference (University of North Carolina at Charlotte, 1974), Academic Press, New York 1975, 393-410.

[00011] [12] S. B. Nadler, Hyperspaces of Sets, Dekker, New York 1978. | Zbl 0432.54007

[00012] [13] A. Petrus, Contractibility of Whitney continua in C(X), Gen. Topology Appl. 9 (1978), 275-288. | Zbl 0405.54006

[00013] [14] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469. | Zbl 0457.54008