We give an algorithm to compute the coincidence Nielsen number N(f,g), introduced in [DJ], for pairs of maps into real projective spaces.
@article{bwmeta1.element.bwnjournal-article-fmv140i2p121bwm, author = {Jerzy Jezierski}, title = {The coincidence Nielsen number for maps into real projective spaces}, journal = {Fundamenta Mathematicae}, volume = {141}, year = {1992}, pages = {121-136}, zbl = {0811.55002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p121bwm} }
Jezierski, Jerzy. The coincidence Nielsen number for maps into real projective spaces. Fundamenta Mathematicae, Tome 141 (1992) pp. 121-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i2p121bwm/
[00000] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen number on non-orientable manifolds, Rocky Mountain J. Math., to appear. | Zbl 0787.55003
[00001] [Je1] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. | Zbl 0715.55002
[00002] [Je2] J. Jezierski, The semi-index product formula, this issue, 99-120. | Zbl 0811.55003
[00003] [J] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, R.I., 1983. | Zbl 0512.55003
[00004] [M] Ch. Maxwell, Coincidences of maps, in: Global Analysis - Analysis on Manifolds, Teubner Texte zur Math. 57, Teubner, Leipzig 1983, 216-237.
[00005] [O] P. Olum, Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50. | Zbl 0038.36601
[00006] [V] J. Vick, Homology Theory, Academic Press, New York 1973.