A new proof of Kelley's Theorem
Ng, S.
Fundamenta Mathematicae, Tome 138 (1991), p. 63-67 / Harvested from The Polish Digital Mathematics Library

Kelley's Theorem is a purely combinatorial characterization of measure algebras. We first apply linear programming to exhibit the duality between measures and this characterization for finite algebras. Then we give a new proof of the Theorem using methods from nonstandard analysis.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:211929
@article{bwmeta1.element.bwnjournal-article-fmv140i1p63bwm,
     author = {S. Ng},
     title = {A new proof of Kelley's Theorem},
     journal = {Fundamenta Mathematicae},
     volume = {138},
     year = {1991},
     pages = {63-67},
     zbl = {0817.28003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p63bwm}
}
Ng, S. A new proof of Kelley's Theorem. Fundamenta Mathematicae, Tome 138 (1991) pp. 63-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p63bwm/

[00000] [F] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebra, Vol. III, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam 1989, 877-980.

[00001] [HL] A. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, New York 1985. | Zbl 0583.26006

[00002] [K] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177. | Zbl 0087.04801

[00003] [L] T. L. Lindstrøm, An invitation to nonstandard analysis, in: Nonstandard Analysis and its Applications, N.J. Cutland (ed.), Cambridge University Press, 1988, 1-105. | Zbl 0658.03044