Kelley's Theorem is a purely combinatorial characterization of measure algebras. We first apply linear programming to exhibit the duality between measures and this characterization for finite algebras. Then we give a new proof of the Theorem using methods from nonstandard analysis.
@article{bwmeta1.element.bwnjournal-article-fmv140i1p63bwm, author = {S. Ng}, title = {A new proof of Kelley's Theorem}, journal = {Fundamenta Mathematicae}, volume = {138}, year = {1991}, pages = {63-67}, zbl = {0817.28003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p63bwm} }
Ng, S. A new proof of Kelley's Theorem. Fundamenta Mathematicae, Tome 138 (1991) pp. 63-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p63bwm/
[00000] [F] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebra, Vol. III, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam 1989, 877-980.
[00001] [HL] A. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, New York 1985. | Zbl 0583.26006
[00002] [K] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177. | Zbl 0087.04801
[00003] [L] T. L. Lindstrøm, An invitation to nonstandard analysis, in: Nonstandard Analysis and its Applications, N.J. Cutland (ed.), Cambridge University Press, 1988, 1-105. | Zbl 0658.03044