For every cardinal τ and every ordinal α, we construct a metrizable space and a strongly countable-dimensional compact space of weight τ such that , and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of and to a subspace of .
@article{bwmeta1.element.bwnjournal-article-fmv140i1p35bwm, author = {Wojciech Olszewski}, title = {On D-dimension of metrizable spaces}, journal = {Fundamenta Mathematicae}, volume = {138}, year = {1991}, pages = {35-48}, zbl = {0807.54007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p35bwm} }
Olszewski, Wojciech. On D-dimension of metrizable spaces. Fundamenta Mathematicae, Tome 138 (1991) pp. 35-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p35bwm/
[00000] [1]R. Engelking, General Topology, Heldermann, Berlin 1989.
[00001] [2]R. Engelking, Dimension Theory, PWN, Warszawa 1978.
[00002] [3] F. Hausdorff, Set Theory, Chelsea, New York 1962.
[00003] [4] D. W. Henderson, D-dimension, I. A new transfinite dimension, Pacific J. Math. 26 (1968), 91-107. | Zbl 0162.26904
[00004] [5] D. W. Henderson, D-dimension, II. Separable spaces and compactifications, ibid., 109-113. | Zbl 0162.27001
[00005] [6] I. M. Kozlovskiĭ, Two theorems on metric spaces, Dokl. Akad. Nauk SSSR 204 (1972), 784-787 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 743-747. | Zbl 0268.54030
[00006] [7] L. Luxemburg, On compactifications of metric spaces with transfinite dimension, Pacific J. Math. 101 (1982), 399-450. | Zbl 0451.54030
[00007] [8] L. Luxemburg, On universal infinite-dimensional spaces, Fund. Math. 122 (1984), 129-147. | Zbl 0571.54029
[00008] [9] W. Olszewski, Universal spaces for locally finite-dimensional and strongly countable-dimensional metrizable spaces, ibid. 135 (1990), 97-109. | Zbl 0743.54019
[00009] [10] L. Polkowski, On transfinite dimension, Colloq. Math. 50 (1985), 61-79. | Zbl 0613.54024
[00010] [11] W. Sierpiński, Cardinal and Ordinal Numbers, PWN, Warszawa 1965.