A characterization of representation-finite algebras
Skowroński, Andrzej ; Wenderlich, M.
Fundamenta Mathematicae, Tome 138 (1991), p. 31-34 / Harvested from The Polish Digital Mathematics Library

Let A be a finite-dimensional, basic, connected algebra over an algebraically closed field. Denote by Γ(A) the Auslander-Reiten quiver of A. We show that A is representation-finite if and only if Γ(A) has at most finitely many vertices lying on oriented cycles and finitely many orbits with respect to the action of the Auslander-Reiten translation.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:211926
@article{bwmeta1.element.bwnjournal-article-fmv140i1p31bwm,
     author = {Andrzej Skowro\'nski and M. Wenderlich},
     title = {A characterization of representation-finite algebras},
     journal = {Fundamenta Mathematicae},
     volume = {138},
     year = {1991},
     pages = {31-34},
     zbl = {0808.16020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p31bwm}
}
Skowroński, Andrzej; Wenderlich, M. A characterization of representation-finite algebras. Fundamenta Mathematicae, Tome 138 (1991) pp. 31-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv140i1p31bwm/

[00000] [1] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. | Zbl 0661.16026

[00001] [2] U. Fischbacher, Une nouvelle preuve d'un théorème de Nazarova et Roiter, C. R. Acad. Sci. Paris Sér. I 300 (9) (1985), 259-262. | Zbl 0586.16012

[00002] [3] M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344. | Zbl 0248.18018

[00003] [4] O. Kerner and A. Skowroński, On module categories with nilpotent infinite radical, Compositio Math. 77 (1991), 313-333. | Zbl 0717.16012

[00004] [5] C. M. Ringel, Finite-dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255. | Zbl 0415.16023

[00005] [6] C. M. Ringel, Report on the Brauer-Thrall conjectures, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, 1980, 104-136.

[00006] [7] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[00007] [8] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa 1990, 535-568.

[00008] [9] A. Skowroński and S. O. Smalø, Directing modules, J. Algebra, to appear. | Zbl 0746.16008