On non-existence of moment estimators of the GED power parameter
Bartosz Stawiarski
Discussiones Mathematicae Probability and Statistics, Tome 36 (2016), p. 5-23 / Harvested from The Polish Digital Mathematics Library

We reconsider the problem of the power (also called shape) parameter estimation within symmetric, zero-mean, unit-variance one-parameter Generalized Error Distribution family. Focusing on moment estimators for the parameter in question, through extensive Monte Carlo simulations we analyze the probability of non-existence of moment estimators for small and moderate samples, depending on the shape parameter value and the sample size. We consider a nonparametric bootstrap approach and prove its consistency. However, despite its established asymptotics, bootstrap does not substantially improve the statistical inference based on moment estimators once they fall into the non-existence area in case of small and moderate sample sizes.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286900
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1185,
     author = {Bartosz Stawiarski},
     title = {On non-existence of moment estimators of the GED power parameter},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {36},
     year = {2016},
     pages = {5-23},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1185}
}
Bartosz Stawiarski. On non-existence of moment estimators of the GED power parameter. Discussiones Mathematicae Probability and Statistics, Tome 36 (2016) pp. 5-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1185/

[000] [1] A. Ayebo and T.J. Kozubowski, An asymmetric generalization of Gaussian and laplace laws, J. Probab. Statist. Sci. 1 (2) (2004), 187-210.

[001] [2] A. Azzalini, Further results on a class of distributions which includes the normal ones, Statistica 46 (1986), 199-208. | Zbl 0606.62013

[002] [3] P.J. Bickel and D.A. Freedman, Some asymptotic theory for the bootstrap, Ann. Stat. 9 (6) (1981), 1196-1217. | Zbl 0449.62034

[003] [4] G.E. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis (Addison Wesley Ed., 1973). | Zbl 0271.62044

[004] [5] Y. Chen and N.C. Beaulieu, Novel low-complexity estimators for the shape parameter of the Generalized Gaussian Distribution, IEEE Transactions on Vehicular Technology 58 (4) (2009), 2067-2071.

[005] [6] D. Coin, A method to estimate power parameter in exponential power distribution via polynomial regression, Banca D’Italia 834 (2011), working paper.

[006] [7] C. Fernandez, J. Osiewalski and M.F.J. Steel, Modeling and inference with vdistributions, J. Amer. Statist. Association 90 (432) (1995), 1331-1340. | Zbl 0868.62045

[007] [8] G. González-Farías, J.A. Domnguez-Molina and R.M. Rodrguez-Dagnino, Efficiency of the approximated shape parameter estimator in the generalized Gaussian distribution, IEEE Transactions on Vehicular Technology 58 (8) (2009), 4214-4223.

[008] [9] R. Krupiński and J. Purczyński, Approximated fast estimator for the shape parameter of Generalized Gaussian Distribution, Signal Processing 86 (2006), 205-211. | Zbl 1163.94354

[009] [10] G. Lunetta, Di una generalizzazione dello schema della curva normale, Annali della Facolta di Economia e Commercio di Palermo 17 (1963), 237-244.

[010] [11] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. 11 (1989), 674-693. | Zbl 0709.94650

[011] [12] A.M. Mineo and M. Ruggieri, A software tool for the exponential power distribution: The normalp package, J. Statist. Software 12 (4) (2005), 1-24.

[012] [13] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005), 685-694. | Zbl 1121.62447

[013] [14] J. Purczyński, Simplified method of GED distribution parameters estimation, Folia Oeconomica Stetinensia 10 (2) (2012), 35-49.

[014] [15] K.-S. Song, A globally convergent and consistent method for estimating the shape parameter of a Generalized Gaussian Distribution, IEEE Transactions on Information Theory 52 (2) (2006), 510-527. | Zbl 1317.62018

[015] [16] M.T. Subbotin, On the law of frequency of errors, Matematicheskii Sbornik 31 (1923), 296-301. | Zbl 49.0370.01

[016] [17] P.R. Tadikamalla, Random sampling from the exponential power distribution, J. Amer. Statist. Association 75 (1980), 683-686. | Zbl 0477.65005

[017] [18] Van der Vaart, Asymptotic Statistics (Cambridge University Press, 1998).

[018] [19] M.K. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, J. Acoustical Society of America 86 (4) (1989), 1404-1415.

[019] [20] D. Zhu and V. Zinde-Walsh, Properties and estimation of asymmetric exponential power distribution, J. Econometrics 148 (2009), 86-99. | Zbl 06600549