In this article author obtain the best unbiased estimators of doubly exchangeable covariance structure. For this purpose the coordinate free-coordinate approach is used. Considered covariance structure consist of three unstructured covariance matrices for three-level variate observations with equal mean vector over v points in time and u sites under the assumption of multivariate normality. To prove, that the estimators are best unbiased, complete statistics are used. Additionally, strong consistency is proven. Under the proposed model the variances of the estimators of covariance components are compared with the ones in the model in [11].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1182, author = {Arkadiusz Kozio\l }, title = {Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {36}, year = {2016}, pages = {93-113}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1182} }
Arkadiusz Kozioł. Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure and structured mean vector. Discussiones Mathematicae Probability and Statistics, Tome 36 (2016) pp. 93-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1182/
[000] [1] M. Fonseca, J.T. Mexia and R. Zmyślony, Least squares and generalized least squares in models with orthogonal block structure, J. Statistical Planning and Inference 140 (5) (2010), 1346-1352. | Zbl 1181.62083
[001] [2] H. Drygas, The Coordinate-Free Approach to Gauss-Markov Estimation (Berlin, Heidelberg, Springer, 1970). | Zbl 0215.26504
[002] [3] S. Gnot, W. Klonecki and R. Zmyślony, Uniformly minimum variance unbiased estimation in various classes of estimators, Statistics 8 (2) (1977), 199-210. | Zbl 0386.62050
[003] [4] S. Gnot, W. Klonecki and R. Zmyślony, Best unbiased estimation: a coordinate free-approach, Probab. and Statis. 1 (1) (1980), 1-13. | Zbl 0526.62061
[004] [5] P. Jordan, J. von Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1) (1934), 29-64. | Zbl 60.0902.02
[005] [6] W. Kruskal, When are Gauss-Markov and Least Squares Estimators Identical, A Coordinate-Free Approach, Ann. Math. Stat. 39 (1) (1968), 70-75. | Zbl 0162.21902
[006] [7] E.L. Lehmann and G. Casella, Theory of Point Estimation (Second Edition, Springer, 1998). | Zbl 0916.62017
[007] [8] A. Roy and R. Leiva, Estimating and testing a structured covariance matrix for three-level multivariate data, Comm. Statist. Theory Methods 40 (11) (2011), 1945-1963. | Zbl 1216.62095
[008] [9] A. Roy and M. Fonseca, Linear models with doubly exchangeable distributed errors, Comm. Statist. Theory Methods 41 (2012), 2545-2569. | Zbl 1270.62102
[009] [10] A. Roy, R. Zmyślony, M. Fonseca and R. Leiva, Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure, J. Multivariate Analysis, 2016. | Zbl 1328.62343
[010] [11] A. Roy, A. Kozioł, R. Zmyślony, M. Fonseca and R. Leiva, Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure, Statistics 144 (2016), 81-90. | Zbl 1328.62343
[011] [12] J.F. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (2) (1971), 710-721. | Zbl 0249.62067
[012] [13] J.F. Seely, Completeness for a family of multivariate normal distributions, Ann. Math. Statist. 43 (1972), 1644-1647. | Zbl 0257.62018
[013] [14] J.F. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhya (Statistics). Indian J. Statist. Ser. A 39 (2) (1977), 170-185. | Zbl 0409.62004
[014] [15] R. Zmyślony, On estimation of parameters in linear models, Appl. Math. XV (1976), 271-276. | Zbl 0401.62049
[015] [16] R. Zmyślony, A characterization of best linear unbiased estimators in the general linear model, Lecture Notes in Statistics 2 (1978), 365-373.
[016] [17] R. Zmyślony, Completeness for a family of normal distributions, Math. Stat. Banach Center Publications 6 (1980), 355-357. | Zbl 0464.62003