A note on robust estimation in logistic regression model
Tadeusz Bednarski
Discussiones Mathematicae Probability and Statistics, Tome 36 (2016), p. 43-51 / Harvested from The Polish Digital Mathematics Library

Computationally attractive Fisher consistent robust estimation methods based on adaptive explanatory variables trimming are proposed for the logistic regression model. Results of a Monte Carlo experiment and a real data analysis show its good behavior for moderate sample sizes. The method is applicable when some distributional information about explanatory variables is available.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286945
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1180,
     author = {Tadeusz Bednarski},
     title = {A note on robust estimation in logistic regression model},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {36},
     year = {2016},
     pages = {43-51},
     zbl = {0794.62026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1180}
}
Tadeusz Bednarski. A note on robust estimation in logistic regression model. Discussiones Mathematicae Probability and Statistics, Tome 36 (2016) pp. 43-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1180/

[000] [1] A.M. Bianco and E. Martinez, Robust testing in the logistic regression model, Computational Statistics and Data Analysis 53 (2009), 4095-4105. | Zbl 05689161

[001] [2] A.M. Bianco and V.J. Yohai, Robust estimation in the logistic regression model, Lecture Notes in Statistics, Springer Verlag, New York 109 (1996), 17-34. | Zbl 0839.62030

[002] [3] E. Cantoni and E. Ronchetti, Robust inference for generalized linear models, Journal of the American Statistical Association 96 (2001), 1022-1030. | Zbl 1072.62610

[003] [4] R.D. Cook and S. Weisberg, Residuals and Influence in Regression (Chapman and Hall, London, 1982). | Zbl 0564.62054

[004] [5] C. Croux, G. Haesbroeck and K. Joossens, Logistic discrimination using robust estimators: An influence function approach, Canadian J. Statist. 36 (2008), 157-174. | Zbl 1143.62036

[005] [6] P. Feigl and M. Zelen, Estimation of exponential probabilities with concomitant information, Biometrics 21 (1965), 826-38.

[006] [7] D.J. Finney, The estimation from individual records of the relationship between dose and quantal response, Biometrika 34 (1947), 320-334. | Zbl 0036.09701

[007] [8] H.R. Kunsch, L.A. Stefanski and R.J. Carroll, Conditionally Unbiased Bounded Influence Estimation in General Regression Models, with Applications to Generalized Linear Models, J. Amer. Statist. Assoc. 84 (1989), 460-466. | Zbl 0679.62024

[008] [9] C.L. Mallows, On some topics in robustness (Tech. Report, Bell Laboratories, Murray Hill, NY, 1975).

[009] [10] S. Morgenthaler, Least-absolute-deviations fits for generalized linear model, Biometrika 79 (1992), 747-754. | Zbl 0850.62562

[010] [11] D. Pregibon, Resistant Fits for some commonly used Logistic Models with Medical Applications, Biometrics 38 (1982), 485-498.

[011] [12] L. Stefanski, R. Carroll and D. Ruppert, Optimally bounded score functions for generalized linear models with applications to logistic regression, Biometrika 73 (1986), 413-424. | Zbl 0616.62043