A random measure associated to a semimartingale is introduced. We use it to investigate properties of several types of stochastic integrals and properties of the solution set of Stratonovich-type stochastic inclusion.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1178, author = {Joachim Syga}, title = {Semimartingale measure in the investigation of Stratonovich-type stochastic integrals and inclusions}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {35}, year = {2015}, pages = {7-27}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1178} }
Joachim Syga. Semimartingale measure in the investigation of Stratonovich-type stochastic integrals and inclusions. Discussiones Mathematicae Probability and Statistics, Tome 35 (2015) pp. 7-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1178/
[000] [1] K.K. Aase and P.Guttrup, Estimation in models for security prices, Scand. Actuarial J. 3/4 (1987), 211-225.
[001] [2] N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach spaces, Stoch. Anal. Appl. 12 (1994), 1-10.
[002] [3] N.U. Ahmed, Impulsive perturbation of C₀ semigroups and stochastic evolution inclusions, Discuss. Math. DICO 22 (1) (2002), 125-149. | Zbl 1039.34055
[003] [4] N.U. Ahmed, A brief summary of optimal control of uncertain systems governed by parabolic inclusions, Arab. J. Sci. Eng. ASJE Math. 4 (1D) (2009), 13-23.
[004] [5] J.P. Aubin and A. Cellina, Differential Inclusions (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
[005] [6] J.P. Aubin and H. Frankowska, Set-Valued Analysis (Birkhäuser, Boston - Basel - Berlin, 1990). | Zbl 0713.49021
[006] [7] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl. 16 (1998), 1-15. | Zbl 0931.60059
[007] [8] E.P. Avgerinos and N.S. Papageorgiou, Random nonlinear evolution inclusions in reflexive Banach spaces, Proc. Amer. Math. Soc. 104 (1988), 293-299. | Zbl 0663.60050
[008] [9] K.L. Chung and R.J. Williams, Introduction to stochastic integration (Birkhäuser, Boston - Basel - Berlin, 1990). | Zbl 0725.60050
[009] [10] G. Da Prato and H. Frankowska, A stochastic Filippov theorem, Stoch. Anal. Appl. 12 (4) (1994), 409-426. | Zbl 0810.60059
[010] [11] D. Duffie, Dynamic Asset Pricing Theory (Princeton Univ. Press Princeton, New Jersey, 1996). | Zbl 1140.91041
[011] [12] M. Errami, F. Russo and P. Vallois, Itôs formula for -functions of a càdlàg process and related calculus, Probab. Theory Relat. Fields 122 (2002), 191-221. | Zbl 0999.60048
[012] [13] A. Fryszkowski, Continuous selections of Aumann integrals, J. Math. Anal. Appl. 145 (2) (1990), 431-446. | Zbl 0704.28006
[013] [14] Góralczyk and J. Motyl, Stratonovich stochastic inclusion, Dynam. Systems Appl. 18 (2) (2009), 191-204. | Zbl 1177.49030
[014] [15] F. Hiai and H. Umegaki, Integrals, conditional expectations, J. Multivar. Anal. 7 (1977), 149-182. | Zbl 0368.60006
[015] [16] M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stoch. Anal. 6 (3) (1993), 217-236. | Zbl 0796.93106
[016] [17] M. Kisielewicz, Existence theorem for nonconvex stochastic inclusions, J. Appl. Math. Stoch. Anal. 2 (1994), 151-159. | Zbl 0817.93065
[017] [18] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. | Zbl 0891.93070
[018] [19] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer Acad. Publ. and Polish Sci. Publ. (Warszawa - Dordrecht - Boston - London, 1991). | Zbl 0731.49001
[019] [20] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part I (Existence and Regularity Properties), Dynam. Systems Appl. 12 (2003), 405-432. | Zbl 1063.93047
[020] [21] M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part II (Viability and Semimartingale Issues), Dynam. Systems Appl. 12 (2003), 433-466. | Zbl 1064.93042
[021] [22] M. Michta, On set-valued stochastic integrals and fuzzy stochastic equations, Fuzzy Sets and Systems 177 (2011), 1-19.
[022] [23] M. Michta and J. Motyl, Differentiable selections of multifunctions and their applications, Nonlinear Anal. 66 (2) (2007), 536-545. | Zbl 1104.49017
[023] [24] M. Michta and J. Motyl, Martingale problem to Stratonovich stochastic inclusion, Nonlinear Anal. 71 (12) (2009), e1307-e1311. | Zbl 1238.60078
[024] [25] J. Motyl, On the solution of a stochastic differential inclusion, J. Math. Anal. Appl. 192 (1) (1995), 117-132. | Zbl 0826.60053
[025] [26] J. Motyl, Note on strong solutions of a stochastic inclusion, J. Appl. Math. Stoch. Anal. 8 (3) (1995), 291-297. | Zbl 0831.93061
[026] [27] J. Motyl, Existence of solutions of set-valued Itô equation, Bull. Acad. Pol. Sci. 46 (1998), 419-430. | Zbl 0916.93069
[027] [28] J. Motyl and J. Syga, Properties of set-valued stochastic integrals, Discuss. Math. Probab. Stat. 26 (2006), 83-103. | Zbl 1129.93046
[028] [29] J. Motyl and J. Syga, Selection property of Stratonovich set-valued integral, Dynamics of Continuous, Discrete and Impulsive Systems 17 (2010), 431-443. | Zbl 1189.93071
[029] [30] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 2nd Edition, Version 2.1 (Berlin - Heideberg - New York, 2005).
[030] [31] D. Repovš and P.V. Semenov, Continuous selections of multivalued mappings (Kluwer Academic Publishers (Dordrecht, Boston, London, 1998)). | Zbl 0915.54001
[031] [32] F. Russo and P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Relat. Fields 97 (1993), 403-421. | Zbl 0792.60046
[032] [33] F. Russo and P. Vallois, The generalized covariation process and Ito formula, Stochastic Process. Appl. 59 (1995), 81-104. | Zbl 0840.60052
[033] [34] J. Syga, Application of semimartingale measure to the investigation of stochastic inclusion, Dynam. Systems Appl. 21 (2012), 393-406. | Zbl 1259.93108