We use asymptotic linearity to derive confidence intervals for large non-centrality parameters. These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics. We show how to use our approach by considering two sets of data as application examples.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1175, author = {Sonia Inacio and Manuela M. Oliveira and Jo\~ao Tiago Mexia}, title = {Confidence intervals for large non-centrality parameters}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {35}, year = {2015}, pages = {45-56}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1175} }
Sonia Inacio; Manuela M. Oliveira; João Tiago Mexia. Confidence intervals for large non-centrality parameters. Discussiones Mathematicae Probability and Statistics, Tome 35 (2015) pp. 45-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1175/
[000] [1] D. Ferreira, S.S. Ferreira, C. Nunes and S. Inácio, Inducing pivot variables and non-centrality parameters in elliptical distributions, AIP Conf. Proc. 1558 (2013), 833.
[001] [2] J.T. Mexia, Assymptotic Chi-squared Tests, Design and Log-Linear Models (Trabalhos de Investigaçăo, 1. Departamento de Matemática, Faculdade de Cięncias e Tecnologia, Universidade Nova de Lisboa, 1992). | Zbl 0801.62045
[002] [3] J.T. Mexia and M.M. Oliveira, Asymptotic linearity and limit distributions, approximations, Journal of Statistical Planning and Inference 140 (2011), 353-357. | Zbl 1177.62019
[003] [4] M.M. Oliveira and J.T. Mexia, ANOVA like analysis of matched series of studies with a common structure, Journal of Statistical Planning and Inference 137 (2007), 1862-1870. | Zbl 1118.62071
[004] [5] C. Nunes, S.S. Ferreira and J.T. Mexia, Fixed effects NOVA: an extension to samples with random size, Journal of Statistical Computation and Simulation 84 (2014), 2316-2328.
[005] [6] H. Scheffé, The Analysis of Variance (New York-John Wiley & Sons, 1959).