A Bayesian significance test of change for correlated observations
Abdeldjalil Slama
Discussiones Mathematicae Probability and Statistics, Tome 34 (2014), p. 51-62 / Harvested from The Polish Digital Mathematics Library

This paper presents a Bayesian significance test for a change in mean when observations are not independent. Using a noninformative prior, a unconditional test based on the highest posterior density credible set is determined. From a Gibbs sampler simulation study the effect of correlation on the performance of the Bayesian significance test derived under the assumption of no correlation is examined. This paper is a generalization of earlier studies by KIM (1991) to not independent observations.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270900
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1169,
     author = {Abdeldjalil Slama},
     title = {A Bayesian significance test of change for correlated observations},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {34},
     year = {2014},
     pages = {51-62},
     zbl = {1326.62194},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1169}
}
Abdeldjalil Slama. A Bayesian significance test of change for correlated observations. Discussiones Mathematicae Probability and Statistics, Tome 34 (2014) pp. 51-62. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1169/

[000] [1] M.M. Barbieri and C. Conigliani, Bayesian analysis of autoregressive time series with change points, J. Italian Stat. Soc. 7 (1998) 243-255. doi: 10.1007/BF03178933

[001] [2] R.L. Brown, J. Durbin and J.M. Evans, Techniques for testing the constancy of regression relationships over time (with discussion), J.R. Statist. Soc. A 138 (1975) 149-63. | Zbl 0321.62063

[002] [3] H. Chernoff and S. Zacks, Estimating the current mean distribution which is subjected to change in time, Ann. Math. Statist. 35 (1964) 999-1018. doi: 10.1214/aoms/1177700517 | Zbl 0218.62033

[003] [4] D. Ghorbanzadeh and R. Lounes, Bayesian analysis for detecting a change in exponential family, Appl. Math. Comp. 124 (2001) 1-15. doi: 10.1016/S0096-3003(00)00029-1 | Zbl 1022.62028

[004] [5] H.-J. Kim, Change-point detection for correlated observations, Statistica Sinica 6 (1996) 275-287. | Zbl 0839.62014

[005] [6] A. Kander and S. Zacks, Test procedure for possible change in parameters of statistical distributions occuring at unknown time point, Ann. Math. Statist. 37 (1966) 1196-1210. doi: 10.1214/aoms/1177699265 | Zbl 0143.41002

[006] [7] D. Kim, A Bayesian significance test of the stationarity of regression parametres, Biometrika 78 (1991) 667-675. doi: 10.2307/2337036 | Zbl 0737.62059

[007] [8] D.V. Hinkley, Inference about the change-point in a sequence of random variables, Biometrika 57 (1970) 1-17. doi: 10.2307/2334932 | Zbl 0198.51501

[008] [9] E.S. Page, Continuous inspection schemes, Biometrika 41 (1954) 100-115. | Zbl 0056.38002

[009] [10] E.S. Page, A test for change in a parameter occurring at an unknown point, Biometrika 42 (1955) 523-527. doi: 10.2307/2333009 | Zbl 0067.11602

[010] [11] A. Sen and M.S. Srivastava, Some one-sided tests for change in level, Technometrics 17 (1975) 61-64. doi: 10.2307/1268001 | Zbl 0294.62023

[011] [12] D. Siegmund, Boundary Crossing probabilities and statistical applications, Ann. Statist. 14 (1986) 361-404. doi: 10.1214/aos/1176349928 | Zbl 0632.62077

[012] [13] D. Siegmund, Confidence sets in change point problem, Int. Statist. Rev. 56 (1988) 31-48. doi: 10.2307/1403360 | Zbl 0684.62028

[013] [14] K.J. Worsley, The power of likelihood ratio and cumulative sum tests for a change in a binomial probability, Biometrika 70 (1983) 455-464. doi: 10.2307/2335560 | Zbl 0529.62025

[014] [15] K.J. Worsley, Confidence regions and tests for a change-point in a sequence of exponential family random variables, Biometrika 73 (1986) 91-104. doi: 10.2307/2336275 | Zbl 0589.62016