On the properties of the Generalized Normal Distribution
Thomas L. Toulias ; Christos P. Kitsos
Discussiones Mathematicae Probability and Statistics, Tome 34 (2014), p. 35-49 / Harvested from The Polish Digital Mathematics Library

The target of this paper is to provide a critical review and to enlarge the theory related to the Generalized Normal Distributions (GND). This three term (position, scale shape) distribution is based in a strong theoretical background due to Logarithm Sobolev Inequalities. Moreover, the GND is the appropriate one to support the Generalized entropy type Fisher's information measure.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270912
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1167,
     author = {Thomas L. Toulias and Christos P. Kitsos},
     title = {On the properties of the Generalized Normal Distribution},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {34},
     year = {2014},
     pages = {35-49},
     zbl = {1326.60024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1167}
}
Thomas L. Toulias; Christos P. Kitsos. On the properties of the Generalized Normal Distribution. Discussiones Mathematicae Probability and Statistics, Tome 34 (2014) pp. 35-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1167/

[000] [1] W.A. Benter, Generalized Poincaré inequality for the Gaussian measures, Amer. Math. Soc. 105 (2) (1989) 49-60.

[001] [2] T. Cacoullos and M. Koutras, Quadric forms in sherical random variables: Generalized non-central χ² distribution, Naval Research Logistics Quarterly 31 (1984) 447-461. doi: 10.1002/nav.3800310310. | Zbl 0561.62049

[002] [3] T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd Ed. (Wiley, 2006). | Zbl 1140.94001

[003] [4] K. Fragiadakis and S.G. Meintanis, Test of fit for asymentric Laplace distributions with applications, J. of Statistics: Advances in Theory and Applications 1 (1) (2009) 49-63. | Zbl 1166.62028

[004] [5] E. Gómez, M.A. Gómez-Villegas and J.M. Marin, A multivariate generalization of the power exponential family of distributions, Comm. Statist. Theory Methods 27 (3) (1998) 589-600. doi: 10.1080/03610929808832115 | Zbl 0895.62053

[005] [6] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007). | Zbl 1208.65001

[006] [7] L. Gross, Logarithm Sobolev inequalities, Amer. J. Math. 97 (761) (1975) 1061-1083. doi: 10.2307/2373688

[007] [8] C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (6) (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179

[008] [9] C.P. Kitsos and N.K. Tavoularis, New entropy type information measures, in: Information Technology Interfaces (ITI 2009), Luzar, Jarec and Bekic (Ed(s)), (Dubrovnic, Croatia, 2009) 255-259.

[009] [10] C.P. Kitsos and T.L. Toulias, Bounds for the generalized entropy-type information measure, J. Comm. Comp. 9 (1) (2012) 56-64.

[010] [11] C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (1) (2012) 49-73. | Zbl 1252.60020

[011] [12] C.P. Kitsos and T.L. Toulias, On the family of the γ-ordered normal distributions, Far East J. of Theoretical Statistics 35 (2) (2011) 95-114. | Zbl 1242.60013

[012] [13] C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.

[013] [14] C.P. Kitsos and T.L. Toulias, Entropy inequalities for the generalized Gaussia, in: Information Technology Interfaces (ITI 2010), Cavtat, Croatia (Ed(s)), (2010, 551-556.

[014] [15] S. Kotz, Multivariate distribution at a cross-road, in: Statistical Distributions in Scientific Work Vol. 1, Patil, Kotz, Ord (Ed(s)), (Dordrecht, The Netherlands: D. Reidel Publ., 1975) 247-270. doi:10.1007/978-94-010-1842-5₂0.

[015] [16] S. Kullback and A. Leibler A, On information and sufficiency, Ann. Math. Statist. 22 (1951) 79-86. doi: 10.1214/aoms/1177729694. | Zbl 0042.38403

[016] [17] S. Nadarajah, A generalized normal distribution, J. Appl. Stat. 32 (7) (2005) 685-694. doi: 10.1080/02664760500079464 | Zbl 1121.62447

[017] [18] S. Nadarajah, The Kotz type distribution with applications, Statistics 37 (4) (2003) 341-358. doi: 10.1080/0233188031000078060 | Zbl 1037.62048

[018] [19] T. Papaioanou and K. Ferentinos, Entropic descriptor of a complex behaviour, Comm. Stat. Theory and Methods 34 (2005) 1461-1470. | Zbl 1073.62003

[019] [20] M. Del Pino, J. Dolbeault and I. Gentil, Nonlinear difussions, hypercontractivity and the optimal Lp-Euclidean logarithic Sobolev ineqiality, J. Math. Anal. Appl. 293 (2) (2004) 375-388. doi: 10.1016/j.jmaa.2003.10.009 | Zbl 1058.35124

[020] [21] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379-423, 623-656. doi: j.1538-7305.1948.tb01338.x. | Zbl 1154.94303

[021] [22] S. Sobolev, On a theorem of functional analysis, English translation: AMS Transl. Ser. 2 34 (1963) 39-68.