A weighted version of Gamma distribution
Kanchan Jain ; Neetu Singla ; Rameshwar D. Gupta
Discussiones Mathematicae Probability and Statistics, Tome 34 (2014), p. 89-111 / Harvested from The Polish Digital Mathematics Library

Weighted Gamma (WG), a weighted version of Gamma distribution, is introduced. The hazard function is increasing or upside-down bathtub depending upon the values of the parameters. This distribution can be obtained as a hidden upper truncation model. The expressions for the moment generating function and the moments are given. The non-linear equations for finding maximum likelihood estimators (MLEs) of parameters are provided and MLEs have been computed through simulations and also for a real data set. It is observed that WG fits better than its submodels (WE), Generalized Exponential (GE), Weibull and Exponential distributions.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:270808
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1166,
     author = {Kanchan Jain and Neetu Singla and Rameshwar D. Gupta},
     title = {A weighted version of Gamma distribution},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {34},
     year = {2014},
     pages = {89-111},
     zbl = {1326.60019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1166}
}
Kanchan Jain; Neetu Singla; Rameshwar D. Gupta. A weighted version of Gamma distribution. Discussiones Mathematicae Probability and Statistics, Tome 34 (2014) pp. 89-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1166/

[000] [1] B.C. Arnold, R.J. Beaver, R.A. Groeneveld and W.Q. Meeker, The nontruncated marginal of a bivariate normal distribution, Psychometrika 58 (3) (1993) 471-488. doi: 10.1007/BF02294652 | Zbl 0794.62075

[001] [2] B.C. Arnold and R.J. Beaver, The Skew Cauchy distribution, Statistics and Probability Letters 49 (2000) 285-290. doi: 10.1016/S0167-7152(00)00059-6 | Zbl 0969.62037

[002] [3] B.C. Arnold, Flexible univariate and multivariate models based on hidden truncation, Proceedings of the 8th Tartu Conference on Multivariate Statistics, June 26-29 (Tartu, Estonia, 2007).

[003] [4] A. Azzalini, A class of distributions which include the normal ones, Scandinavian J. Stat. 12 (1985) 171-178.

[004] [5] R.E. Barlow and F. Proschan F, Statistical Theory of Reliability and Life Testing: Probability Models. To Begin with (Silver Springs, MD, 1981).

[005] [6] Z.W. Birnbaum and S.C. Saunders, Estimation for a family of life distributions with applications to fatigue, J. Appl. Prob. 6 (1969) 328-347. doi: 10.2307/3212004 | Zbl 0216.22702

[006] [7] R.A. Fisher, The effects of methods of ascertainment upon the estimation of frequencies, Annals of Eugenics 6 (1934) 13-25. doi: 10.1111/j.1469-1809.1934.tb02105.x

[007] [8] R.E. Glaser, Bathtub and related failure rate characterizations, J. Amer. Assoc. 75 (371) (1980) 667-672. doi: 10.2307/2287666 | Zbl 0497.62017

[008] [9] R.C. Gupta and S.N.U.A. Kirmani, The role of weighted distributions in stochastic modelling, Communications in Statisics - Theory and Methods 19 (9) (1990) 3147-3162. doi: 10.1080/03610929008830371 | Zbl 0734.62093

[009] [10] R.D. Gupta and D. Kundu, Generalized exponential distributions, Australian & New Zealand J. Stat. 41 (1999) 173-188. doi: 10.1111/1467-842X.00072 | Zbl 1007.62503

[010] [11] R.G. Gupta and D. Kundu, A new class of weighted exponential distributions, Statistics 43 (6) (2009) 621-634. doi: 10.1080/02331880802605346 | Zbl 1291.60029

[011] [12] K. Jain, H. Singh and I. Bagai, Relations for reliability measures of weighted distribution, Communications in Statistics - Theory and Methods 18 (12) (1989) 4393-4412. doi: 10.1080/03610928908830162 | Zbl 0707.62197

[012] [13] R. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1, second edition (New York, Wiley Inter-Science, 1994). | Zbl 0811.62001

[013] [14] C.D. Lai and M. Xie, Stochastic Ageing and Dependence for Reliability (Germany, Springer, 2006). doi: 10.1007/0-387-34232-X | Zbl 1098.62130

[014] [15] M. Mahfoud and G.P. Patil, On Weighted Distributions, in: G. Kallianpur, P.R. Krishnaiah and J.K. Ghosh, eds., Statistics and Probability: Essays in Honor of C.R. Rao (North-Holland, Amsterdam, 1982) 479-492.

[015] [16] A.K. Nanda and K. Jain, Some weighted distribution results on univariate and bivariate cases, J. Stat. Planning and Inference 77 (2) (1999) 169-180. doi: 10.1016/S0378-3758(98)00190-6 | Zbl 0924.62018

[016] [17] G.P. Patil, Weighted Distributions, Encyclopaedia of Environmetrics, eds., A.H. El-Shaarawi and W.W. Piegorsch, 2369-2377 (John Wiley & Sons, Ltd, Chichester, 2002).

[017] [18] C.R. Rao, On discrete distributions arising out of methods of ascertainment, in: G.P. Patil (ed.), Classical and Contagious Discrete Distributions, Permagon Press, Oxford and Statistical Publishing Society (Calcutta, 1965) 320-332.

[018] [19] M. Shaked and J.G. Shanthikumar, Stochastic Orders (Germany, Springer, 2007). doi: 10.1007/978-0-387-34675-5