In the paper we deal with the problem of parameter estimation in the linear normal mixed model with two variance components. We present solutions to the problem of finding the global maximizer of the likelihood function and to the problem of finding the global maximizer of the REML likelihood function in this model.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1165, author = {Mariusz Grz\k adziel}, title = {On maximum likelihood estimation in mixed normal models with two variance components}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {34}, year = {2014}, pages = {187-197}, zbl = {1326.62152}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1165} }
Mariusz Grządziel. On maximum likelihood estimation in mixed normal models with two variance components. Discussiones Mathematicae Probability and Statistics, Tome 34 (2014) pp. 187-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1165/
[000] [1] R. Christensen, Plane answers to complex questions: the theory of linear models, 4th Edition (Springer, New York, 2011). doi: 10.1007/978-1-4419-9816-3. | Zbl 1266.62043
[001] [2] E. Demidenko and H. Massam, On the existence of the maximum likelihood estimate in variance components models, Sankhyā A. Methods and Techniques 61 (1999) 431-443. | Zbl 0972.62034
[002] [3] S. Gnot, A. Michalski and A. Urbańska-Motyka, On some properties of ML and REML estimators in mixed normal models with two variance components, Discuss. Math. Prob. and Stat. 24 (2004) 109-126. | Zbl 1052.62029
[003] [4] S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, Maximum likelihood estimation in mixed normal models with two variance components, Statistics 36 (2002) 283-302. doi: 10.1080/02331880213197. | Zbl 1003.62017
[004] [5] G. Golub and C. Van Loan, Matrix Computations, 4th Edition (The John Hopkins University Press, Baltimore, 2013). | Zbl 1268.65037
[005] [6] E. Gross, M. Drton and S. Petrović, Maximum likelihood degree of variance components models, Electronic J. Stat. 6 (2012) 993-1016. doi: 10.1214/12-EJS702. | Zbl 1281.62159
[006] [7] M. Grządziel and A. Michalski, A note on the existence of maximum likelihood estimates in variance components models, accepted for publication in Discuss. Math. Prob. and Stat. 2014.
[007] [8] J. Jiang, Linear and Generalized Linear Mixed Models and Their Applications (Springer, New York, 2007). doi: 10.1007/978-0-387-47946-0. | Zbl 1152.62040
[008] [9] A. Olsen, J. Seely and D. Birkes, Invariant quadratic estimation for two variance components, Ann. Stat. 4 (1976) 878-890. doi: 10.1214/aos/1176343586. | Zbl 0344.62060
[009] [10] C. R. Rao and J. Kleffe, Estimation of Variance Components and Applications (North Holland, New York, 1988). doi: 10.1002/bimj.4710320518. | Zbl 0645.62073
[010] [11] C. R. Rao and H. Toutenburg, Linear Models: Least Squares and Alternatives, 2nd Edition (Springer, New York, 1999). | Zbl 0846.62049