Algebraic structure for the crossing of balanced and stair nested designs
Célia Fernandes ; Paulo Ramos ; João Tiago Mexia
Discussiones Mathematicae Probability and Statistics, Tome 34 (2014), p. 71-88 / Harvested from The Polish Digital Mathematics Library

Stair nesting allows us to work with fewer observations than the most usual form of nesting, the balanced nesting. In the case of stair nesting the amount of information for the different factors is more evenly distributed. This new design leads to greater economy, because we can work with fewer observations. In this work we present the algebraic structure of the cross of balanced nested and stair nested designs, using binary operations on commutative Jordan algebras. This new cross requires fewer observations than the usual cross balanced nested designs and it is easy to carry out inference.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:271055
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1162,
     author = {C\'elia Fernandes and Paulo Ramos and Jo\~ao Tiago Mexia},
     title = {Algebraic structure for the crossing of balanced and stair nested designs},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {34},
     year = {2014},
     pages = {71-88},
     zbl = {1326.62160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1162}
}
Célia Fernandes; Paulo Ramos; João Tiago Mexia. Algebraic structure for the crossing of balanced and stair nested designs. Discussiones Mathematicae Probability and Statistics, Tome 34 (2014) pp. 71-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1162/

[000] [1] C. Fernandes, P. Ramos and J. Mexia, Algebraic structure of step nesting designs, Discuss. Math. Probab. Stat. 30 (2010) 221-235. doi: 10.7151/dmps.1129. | Zbl 1272.62051

[001] [2] C. Fernandes, P. Ramos and J. Mexia, Crossing balanced nested and stair nested designs, Electron. J. Linear Algebra 25 (2012) 22-47. | Zbl 1302.62178

[002] [3] M. Fonseca, J. Mexia and R. Zmyślony, Estimators and tests for variance components in cross nested orthogonal designs, Discuss. Math. Probab. Stat. 23 (2003) 175-201. | Zbl 1049.62065

[003] [4] M. Fonseca, J. Mexia and R. Zmyślony, Binary Operations on Jordan Algebras and Orthogonal Normal Models, Linear Algebra Appl. 417 (2006) 75-86. doi: 10.1016/j.laa.2006.03.045. | Zbl 1113.62004

[004] [5] A. Khuri, T. Mathew and B. Sinha, Statistical tests for mixed linear models (John Wiley and Sons, New York, 1998). | Zbl 0893.62009

[005] [6] N. Jacobson, Structure and Representation of Jordan Algebras (Colloqium Publications 39, American Mathematical Society, 1968). | Zbl 0218.17010

[006] [7] P. Jordan, J. von Neumann and E. Wigner, On a algebraic generalization of the quantum mechanical formulation, Ann. Math. 35 (1934) 9-64. | Zbl 60.0902.02

[007] [8] J. Seely, Linear spaces and unbiased estimation, Ann. Math. Stat. 41 (1970) 1725-1734. doi: 10.1214/aoms/1177696817. | Zbl 0263.62040

[008] [9] J. Seely, Linear spaces and unbiased estimators - Application to the mixed linear model, Ann. Math. Stat. 41 (1970) 1735-1745. doi: 10.1214/aoms/1177696818. | Zbl 0263.62041

[009] [10] J. Seely, Quadratic subspaces and completeness, Ann. Math. Stat. 42 (1971) 710-721. doi: 10.1214/aoms/1177693420. | Zbl 0249.62067