Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail dependence and independence. A full characterization of the bivariate lag-m tail dependence is presented. This will be useful in an adjustment procedure of the model to real data. An illustration with financial data is presented at the end.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1150, author = {Marta Ferreira}, title = {Extremal (in)dependence of a maximum autoregressive process}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {33}, year = {2013}, pages = {47-64}, zbl = {1321.60109}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1150} }
Marta Ferreira. Extremal (in)dependence of a maximum autoregressive process. Discussiones Mathematicae Probability and Statistics, Tome 33 (2013) pp. 47-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1150/
[000] [1] M.T. Alpuim, An extremal Markovian sequence, J. Appl. Probab. 26 (1989) 219-232. doi: 10.2307/3214030. | Zbl 0677.60026
[001] [2] M.T. Alpuim and E. Athayde, On the stationary distribution of some extremal Markovian sequences, J. Appl. Probab. 27 (1990) 291-302. doi: 10.2307/3214648.
[002] [3] J. Beirlant, Y. Goegebeur, J. Segers and J. Teugels, Statistics of Extremes: Theory and Application (John Wiley, Chichester, UK, 2004). doi: 10.1002/0470012382. | Zbl 1070.62036
[003] [4] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer-Verlag, Berlin, 1997).
[004] [5] R. Davis and S. Resnick, Basic properties and prediction of max-ARMA processes, Adv. Appl. Probab. 21 (1989) 781-803. doi: 10.2307/1427767. | Zbl 0716.62098
[005] [6] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme value distribution, Ann. Statist. 17 (1989) 1833-1855. doi: 10.1214/aos/1176347397. | Zbl 0701.62029
[006] [7] D. Dietrich, L. de Haan and J. Hüsler, Testing extreme value conditions, Extremes 5 (2000) 71-85. doi: 10.1023/A:1020934126695. | Zbl 1035.60050
[007] [8] G. Draisma, H. Drees, A. Ferreira and L. de Haan, Bivariate tail estimation: dependence in asymptotic independence, Bernoulli 10 (2004) 251-280. doi: 10.3150/bj/1082380219. | Zbl 1058.62043
[008] [9] H. Drees, Extreme quantile estimation for dependent data with applications to finance, Bernoulli 9 (2003) 617-657. doi: 10.3150/bj/1066223272. | Zbl 1040.62077
[009] [10] M. Ferreira, On tail dependence: a characterization for first-order max-autoregressive processes, Math. Notes 90 (2011) 103-114. doi: 10.1134/S0001434611110277.
[010] [11] M. Ferreira, Parameter estimation and dependence characterization of the MAR(1) process, ProbStat Forum 5 (2012) 107-111. | Zbl 1274.62587
[011] [12] M. Ferreira and L. Canto e Castro, Tail and dependence behaviour of levels that persist for a fixed period of time, Extremes 11 (2008) 113-133. doi: 10.1007/s10687-007-0046-y. | Zbl 1199.60185
[012] [13] M. Ferreira and L. Canto e Castro, Asymptotic and pre-asymptotic tail behavior of a power max-autoregressive model, ProbStat Forum 3 (2010a) 91-107. | Zbl 1193.62158
[013] [14] M. Ferreira and L. Canto e Castro, Modeling rare events through a pRARMAX process, J. Statist. Plann. Inference 140 (2010b) 3552-3566. doi: 10.1016/j.jspi.2010.05.024. | Zbl 05773131
[014] [15] M. Ferreira and L. Canto e Castro, A Method For Fitting A pRARMAX Model: An Application To Financial Data, in: Proceedings of The World Congress on Engineering 2010 Vol. III, Lecture Notes in Engineering and Computer Science (Ed(s)), (London, U.K., 2010c) 2022-2026.
[015] [16] G. Frahm, M. Junker and R. Schmidt, Estimating the tail-dependence coefficient: properties and pitfalls, Insurance Math. Econom. 37 (2005) 80-100. doi: 10.1016/j.insmatheco.2005.05.008. | Zbl 1101.62012
[016] [17] J.E. Heffernan, J.A. Tawn and Z. Zhang, Asymptotically (in)dependent multivariate maxima of moving maxima processes, Extremes 10 (2007) 57-82. doi: 10.1007/s10687-007-0035-1. | Zbl 1150.60030
[017] [18] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975) 1163-1174. doi: 10.1214/aos/1176343247. | Zbl 0323.62033
[018] [19] A.V. Lebedev, Statistical analysis of first-order MARMA processes, Math. Notes 83 (2008) 506-511. doi: 10.1134/S0001434608030243. | Zbl 1152.62059
[019] [20] Z. Zhang, A New Class of Tail-Dependent Time Series Models and Its Applications in Financial Time Series, Advances in Econometrics 20B (2005) 323-358.