The convergence of discrete approximations of generalized reflected backward stochastic differential equations with random terminal time in a general convex domain is studied. Applications to investigation obstacle elliptic problem with Neumann boundary condition for partial differential equations are given.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1145, author = {Katarzyna Ja\'nczak-Borkowska}, title = {Discrete approximations of generalized RBSDE with random terminal time}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {32}, year = {2012}, pages = {69-85}, zbl = {1311.60062}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1145} }
Katarzyna Jańczak-Borkowska. Discrete approximations of generalized RBSDE with random terminal time. Discussiones Mathematicae Probability and Statistics, Tome 32 (2012) pp. 69-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1145/
[000] [1] V. Bally, Approximation scheme for solutions of BSDE, Pitman Res. Notes Math. Ser. 364 Longman Harlow (1997) 177-191. | Zbl 0889.60068
[001] [2] V. Bally and G. Pages, Error analysis of the optimal quantization algorithm for obstacle problems, Stochastic Process. Appl. 106 (1) (2003) 1-40. doi: 10.1016/S0304-4149(03)00026-7. | Zbl 1075.60523
[002] [3] P. Briand, B. Delyon and J. Mémin, Donsker-Type theorem for BSDEs, Elect. Comm. in Probab. 6 (2001) 1-14. | Zbl 0977.60067
[003] [4] P. Briand, B. Delyon and J. Mémin, On the robustness of backward stochastic diffrential equations, Stochastic Process. Appl. 97 (2002) 229-253. doi: 10.1016/S0304-4149(01)00131-4. | Zbl 1058.60041
[004] [5] A. Gegout-Petit and É. Pardoux, Equations diffréntielles stochastiques rétrogrades réfléchies dans un convexe, Stoch. Stoch. Rep. 57 (1996) 111-128. | Zbl 0891.60050
[005] [6] K. Jańczak, Discrete approximations of reflected backward stochastic differential equations with random terminal time, Probab. Math. Statistics 28 (2008) 41-74. | Zbl 1147.60036
[006] [7] K. Jańczak, Generalized reflected backward stochastic differential equations, Stochastics 81 (2009) 147-170. doi: 10.1080/17442500802299007. | Zbl 1165.60327
[007] [8] K. Jańczak-Borkowska, Generalized RBSDE with random terminal time, Bull. Polish Acad. Sci. Math. 59 (2011) 85-100. doi: 10.4064/ba59-1-10.
[008] [9] P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. (1984) 511-537. | Zbl 0598.60060
[009] [10] J. Ma, P. Protter, J. San Martin and S. Torres, Numerical method for backward stochastic differential equations, Ann. Appl. Probab. 12 (2002) 302-316. doi: 10.1214/aoap/1015961165. | Zbl 1017.60074
[010] [11] J. Ma and J. Zhang, Representation and regularities for solutions to BSDEs with reflections, Stochastic Process. Appl. 115 (2005) 539-569. doi: 10.1016/j.spa.2004.05.010. | Zbl 1076.60049
[011] [12] J.L. Menaldi, Stochastic variational inequality for reflected diffusion, Indiana Univ. Math. Journal 32 (1983) 733-744. doi: 10.1512/iumj.1983.32.32048. | Zbl 0492.60057
[012] [13] É. Pardoux and S. Peng, Adapted solutions of a backward stochastic differential equation, Systems Control Lett. 14 (1990) 55-61. doi: 10.1016/0167-6911(90)90082-6. | Zbl 0692.93064
[013] [14] É. Pardoux and A. Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl. 76 (1998) 191-215. doi: 10.1016/S0304-4149(98)00030-1. | Zbl 0932.60070
[014] [15] É. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems, Probab. Theory Relat. Fields 110 (1998) 535-558. doi: 10.1007/s004400050158. | Zbl 0909.60046
[015] [16] Y. Ren and N. Xia, Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition, Stochastic Analysis and Applications 24 (2006) 1-21. doi: 10.1080/07362990600870454. | Zbl 1122.60055
[016] [17] L. Słomiński, Euler's approximations of solutions of SDE's with reflecting boundary, Stochastic Process. Appl. 94 (2001) 317-337. doi: 10.1016/S0304-4149(01)00087-4. | Zbl 1053.60062
[017] [18] S. Toldo, Stability of solutions of BSDEs with random terminal time, SAIM Probab. Stat. 10 (2006) 141-163. doi: 10.1051/ps:2006006. | Zbl 1185.60064