On the universal constant in the Katz-Petrov and Osipov inequalities
Victor Korolev ; Sergey Popov
Discussiones Mathematicae Probability and Statistics, Tome 31 (2011), p. 29-39 / Harvested from The Polish Digital Mathematics Library

Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:277014
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1138,
     author = {Victor Korolev and Sergey Popov},
     title = {On the universal constant in the Katz-Petrov and Osipov inequalities},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {31},
     year = {2011},
     pages = {29-39},
     zbl = {1258.60025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1138}
}
Victor Korolev; Sergey Popov. On the universal constant in the Katz-Petrov and Osipov inequalities. Discussiones Mathematicae Probability and Statistics, Tome 31 (2011) pp. 29-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1138/

[000] [1] R.N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions (New York, Wiley, 1976).

[001] [2] L.H.Y. Chen and Q.M. Shao, A non-uniform Berry-Esseen bound via Stein's method, Probability Theory and Related Fields 120 (2001) 236-254. | Zbl 0996.60029

[002] [3] W. Hoeffding, The extrema of the expected value of a function of independent random variables, Ann. Math. Statist. 19 (1948) 239-325.

[003] [4] M. Katz, Note on the Berry-Esseen theorem, Annals of Math. Statist. 39 (4) (1963) 1348-1349.

[004] [5] V.Yu. Korolev and I.G. Shevtsova, An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums, Scandinavian Actuarial Journal, 2010. Online first: http://www.informaworld.com/10.1080/03461238.2010.485370, 04 June 2010. | Zbl 1277.60042

[005] [6] J.S. Nefedova and I.G. Shevtsova, On non-uniform estimates of convergence rate in the central limit theorem, Theory Probab. Appl. 56 (2011), to appear. | Zbl 1245.60030

[006] [7] L.V. Osipov, A refinement of the Lindeberg theorem, Theory Probab. Appl. 11 (2) (1966) 339-342.

[007] [8] L. Paditz, Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List 27 (4) (1980) 829-837.

[008] [9] L. Paditz, On error-estimates in the central limit theorem for generalized linear discounting, Math. Operationsforsch. u. Statist., Ser. Statistics 15 (4) (1984) 601-610. | Zbl 0553.60030

[009] [10] L. Paditz, Über eine Fehlerabschätzung im zentralen Grenzwertsatz, Wiss. Z. Hochschule für Verkehrswesen Friedrich List Dresden 33 (2) (1986) 399-404. | Zbl 0606.60031

[010] [11] V.V. Petrov, An estimate of the deviation of the distribution of a sum of independent random variables from the normal law, Soviet Math. Dokl. 160 (5) (1965) 1013-1015.

[011] [12] V.V. Petrov, Sums of Independent Random Variables (New York, Springer, 1975).

[012] [13] I.G. Shevtsova, A refinement of the estimates of the rate of convergence in the Lyapunov theorem, Doklady Mathematics 435 (1) (2010) 26-28.