Some methods of constructing kernels in statistical learning
Tomasz Górecki ; Maciej Łuczak
Discussiones Mathematicae Probability and Statistics, Tome 30 (2010), p. 179-201 / Harvested from The Polish Digital Mathematics Library

This paper is a collection of numerous methods and results concerning a design of kernel functions. It gives a short overview of methods of building kernels in metric spaces, especially Rn and Sn. However we also present a new theory. Introducing kernels was motivated by searching for non-linear patterns by using linear functions in a feature space created using a non-linear feature map.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:277015
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1127,
     author = {Tomasz G\'orecki and Maciej \L uczak},
     title = {Some methods of constructing kernels in statistical learning},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {30},
     year = {2010},
     pages = {179-201},
     zbl = {1272.62049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1127}
}
Tomasz Górecki; Maciej Łuczak. Some methods of constructing kernels in statistical learning. Discussiones Mathematicae Probability and Statistics, Tome 30 (2010) pp. 179-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1127/

[000] [1] M. Abramowitz and I.A. Stegun, Chs. Legendre functions and orthogonal polynomials in Handbook of mathematical functions, Dover Publications, New York 1972.

[001] [2] B.E. Boser, I.M. Guyon and V.N. Guyon, A training algorithm for optimal margin classifiers, in D. Haussler, eds. 5th Annual ACM Workshop on COLT. ACM Press, Pittsburgh (1992), 144-152.

[002] [3] C.J.C. Burges, Geometry and invariance in kernel based methods in: Schölkopf, B. Burges, C.J.C. Smola, A.J. eds. Advances in kernel methods - support vector learning. MIT Press, Cambridge (1999), 89-116.

[003] [4] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning 20 (1995), 273-297.

[004] [5] R. Herbrich, Learning Kernel Classifiers, MIT Press, London 2002. | Zbl 1063.62092

[005] [6] T. Hofmann, B. Schölkopf and A.J. Smola, Kernels methods in machine learning, Annals of Statistics 36 (2008), 1171-1220. | Zbl 1151.30007

[006] [7] Z. Ovari, Kernels, eigenvalues and support vector machines, Honours thesis, Australian National University, Canberra 2000.

[007] [8] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, London 2002.

[008] [9] B. Schölkopf, A.J. Smola and K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998), 1299-1319.

[009] [10] I.J. Schoenberg, Positive definite functions on spheres, Duke Mathematical Journal 9 (1942), 96-108. | Zbl 0063.06808

[010] [11] A. Tarantola, Inverse problem theory and methods for model paramenter estimation, SIAM, Philadelphia 2005. | Zbl 1074.65013

[011] [12] M. Zu, Kernels and ensembles: perspective on statistical learning, American Statistician 62 (2008), 97-109.