When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, see Sørensen (1998), we used the Ornstein-Uhlenbeck process for which exact simulations can be carried out.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1124, author = {Lu\'\i s Ramos}, title = {Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {30}, year = {2010}, pages = {117-122}, zbl = {1208.62130}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1124} }
Luís Ramos. Sample partitioning estimation for ergodic diffusions: application to Ornstein-Uhlenbeck diffusion. Discussiones Mathematicae Probability and Statistics, Tome 30 (2010) pp. 117-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1124/
[000] [1] B.M. Bibby and M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli 1 (1995), 17-39. | Zbl 0830.62075
[001] [2] U. Küchler and M. Sørensen, Exponential Families of Stochastic Processes, Springer-Verlag 1997.
[002] [3] S. Iacus, Simulation and Inference for Stochastic Differential, Equations with R Examples, Springer 2008. | Zbl 1210.62112
[003] [4] J.T. Mexia and G.C. Dias, Statistical Inference for Discretely Observed Diffusions of Diffusions, VII-Congresso da SPE, 14-16 Outubro, Osir 1999.
[004] [5] B. Øksendal, Stochastic Differential Equations, An Introduction, Fifth Edition, Springer-Verlag 1998.
[005] [6] M. Sørensen, Lecture Notes on 'Statistical Inference for Discretely Observed Diffusions', Berlin Graduiertenkolleg 1998.