In this article, we begin with an asymptotic comparison at optimal levels of the so-called "maximum likelihood" (ML) extreme value index estimator, based on the excesses over a high random threshold, denoted PORT-ML, with PORT standing for peaks over random thresholds, with a similar ML estimator, denoted PORT-MP, with MP standing for modified-Pareto. The PORT-MP estimator is based on the same excesses, but with a trial of accommodation of bias on the Generalized Pareto model underlying those excesses. We next compare the behaviour of these ML implicit estimators with the equivalent behaviour of a few explicit tail index estimators, the Hill, the moment, the generalized Hill and the mixed moment. As expected, none of the estimators can always dominate the alternatives, even when we include second-order MVRB tail index estimators, with MVRB standing for minimum-variance reduced-bias. However, the asymptotic performance of the MVRB estimators is quite interesting and provides a challenge for a further study of these MVRB estimators at optimal levels.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1120, author = {M. Ivette Gomes and L\'\i gia Henriques-Rodrigues}, title = {Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {30}, year = {2010}, pages = {35-51}, zbl = {1208.62086}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1120} }
M. Ivette Gomes; Lígia Henriques-Rodrigues. Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?. Discussiones Mathematicae Probability and Statistics, Tome 30 (2010) pp. 35-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1120/
[000] [1] P. Araújo Santos, M.I. Fraga Alves and M.I. Gomes, Peaks over random threshold methodology for tail index and quantile estimation, Revstat 4 (3) (2006), 227-247.
[001] [2] J. Beirlant, G. Dierckx and A. Guillou, Estimation of the extreme-value index and generalized quantile plots, Bernoulli 11 (6) (2005), 949-970. | Zbl 1123.62034
[002] [3] J. Beirlant, P. Vynckier and J.L. Teugels, Excess functions and estimation of the extreme-value index, Bernoulli 2 (1996), 293-318. | Zbl 0870.62019
[003] [4] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Cambridge Univ. Press 1987. | Zbl 0617.26001
[004] [5] F. Caeiro, M.I. Gomes and D.D. Pestana, Direct reduction of bias of the classical Hill estimator, Revstat 3 (2) (2005), 113-136. | Zbl 1108.62049
[005] [6] A. Davison, Modeling excesses over high threshold with an application, In J. Tiago de Oliveira ed., Statistical Extremes and Applications, D. Reidel (1984), 461-482.
[006] [7] A. Dekkers, J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value distribution, Annals of Statistics 17 (1989), 1833-1855. | Zbl 0701.62029
[007] [8] A. Dekkers and L. de Haan, Optimal sample fraction in extreme value estimation, J. Multivariate Analysis 47 (2) (1993), 173-195.
[008] [9] H. Drees, A. Ferreira and L. de Haan, On maximum likelihood estimation of the extreme value index, Ann. Appl. Probab. 14 (2004), 1179-1201. | Zbl 1102.62051
[009] [10] M.I. Fraga Alves, M.I. Gomes and L. de Haan, A new class of semi-parametric estimators of the second order parameter, Portugaliae Mathematica 60 (2) (2003), 193-214. | Zbl 1042.62050
[010] [11] M.I. Fraga Alves, M.I. Gomes, L. de Haan and C. Neves, The mixed moment estimator and location invariant alternatives, Extremes, 12 (2009), 149-185. | Zbl 1223.62075
[011] [12] J. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, Netherlands 1987. | Zbl 0624.26003
[012] [13] B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453. | Zbl 0063.01643
[013] [14] M.I. Gomes, M.I. Fraga Alves, and P.A. Santos, PORT Hill and Moment Estimators for Heavy-Tailed Models, Commun. Statist. - Simul. & Comput. 37 (2008a), 1281-1306. | Zbl 1152.65016
[014] [15] M.I. Gomes, L. de Haan and L. Henriques-Rodrigues, Tail index estimation through accommodation of bias in the weighted log-excesses, J. Royal Statistical Society B70 (1) (2008b), 31-52. | Zbl 05563342
[015] [16] M.I. Gomes and L. Henriques-Rodrigues, Tail index estimation for heavy tails: accommodation of bias in the excesses over a high threshold, Extremes, 11 (3) (2008), 303-328.
[016] [17] M.I. Gomes and M.J. Martins, Alternatives to Hill's estimator - asymptotic versus finite sample behaviour, J. Statist. Planning and Inference 93 (2001), 161-180. | Zbl 0967.62035
[017] [18] M.I. Gomes and M.J. Martins, 'Asymptotically unbiased' estimators of the tail index based on external estimation of the second order parameter, Extremes 5 (1) (2002), 5-31. | Zbl 1037.62044
[018] [19] M.I. Gomes, C. Miranda and H. Pereira, Revisiting the role of the Jackknife methodology in the estimation of a positive extreme value index, Comm. in Statistics - Theory and Methods 34 (2005), 1-20. | Zbl 1062.62087
[019] [20] M.I. Gomes, C. Miranda and C. Viseu, Reduced bias extreme value index estimation and the Jackknife methodology, Statistica Neerlandica 61 (2) (2007) 243-270. | Zbl 1121.62054
[020] [21] M.I. Gomes and C. Neves, Asymptotic comparison of the mixed moment and classical extreme value index estimators, Statistics and Probability Letters 78 (6) (2008), 643-653. | Zbl 05268494
[021] [22] M.I. Gomes and D. Pestana, A sturdy reduced-bias extreme quantile (VaR) estimator, J. American Statistical Association 102 (477) (2007), 280-292. | Zbl 1284.62300
[022] [23] L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tract 32, Amsterdam 1970. | Zbl 0226.60039
[023] [24] L. de Haan and A. Ferreira, Extreme Value Theory: an Introduction, Springer Science+Business Media, LLC, New York 2006. | Zbl 1101.62002
[024] [25] L. de Haan and L. Peng, Comparison of tail index estimators, Statistica Neerlandica 52 (1998), 60-70. | Zbl 0937.62050
[025] [26] P. Hall and A.H. Welsh, Adaptive estimates of parameters of regular variation, Ann. Statist. 13 (1985), 331-341. | Zbl 0605.62033
[026] [27] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), 1163-1174. | Zbl 0323.62033
[027] [28] V. Pareto, Oeuvres Complétes, Geneva, Droz. 1965.
[028] [29] R.L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (3) (1987), 1174-1207. | Zbl 0642.62022
[029] [30] G.K. Zipf, National Unity and Disunity, Blomington, in: Principia Press 1941.