In this paper we consider a new class of consistent semi-parametric estimators of a negative extreme value index, based on the set of the k largest observations. This class of estimators depends on a control or tuning parameter, which enables us to have access to an estimator with a null second-order component of asymptotic bias, and with a rather interesting mean squared error, as a function of k. We study the consistency and asymptotic normality of the proposed estimators. Their finite sample behaviour is obtained through Monte Carlo simulation.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1118, author = {Frederico Caeiro and M. Ivette Gomes}, title = {An asymptotically unbiased moment estimator of a negative extreme value index}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {30}, year = {2010}, pages = {5-19}, zbl = {1208.62084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1118} }
Frederico Caeiro; M. Ivette Gomes. An asymptotically unbiased moment estimator of a negative extreme value index. Discussiones Mathematicae Probability and Statistics, Tome 30 (2010) pp. 5-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1118/
[000] [1] F. Caeiro, M.I. Gomes and D.D. Pestana, Direct reduction of bias of the classical Hill estimator, Revstat 3 (2) (2005), 113-136. | Zbl 1108.62049
[001] [2] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value distribution, The Annals of Statistics 17 (4) (1989), 1833-1855. | Zbl 0701.62029
[002] [3]G. Draisma, L. de Haan, L. Peng and T. Themido Pereira, A bootstrap-based method to achieve optimality in estimating the extreme value index, Extremes 2 (4) (1999), 367-404. | Zbl 0972.62014
[003] [4] M.I. Fraga Alves, Weiss-Hill estimator, Test 10 (2001), 203-224.
[004] [5] B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453. | Zbl 0063.01643
[005] [6] M.I. Gomes, L. de Haan and L. Henriques Rodrigues, Tail Index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses, J. R. Stat. Soc. Ser. B 70 (1) (2008), 31-52. | Zbl 05563342
[006] [7] M.I. Gomes, M.J. Martins and M.M. Neves, Improving second order reduced-bias tail index estimation, Revstat 5 (2) (2007), 177-207. | Zbl 05217613
[007] [8] M.I. Gomes and C. Neves, Asymptotic comparison of the mixed moment and classical extreme value index estimators, Statistics & Probability Letters 78 (2008), 643-653. | Zbl 05268494
[008] [9] M.I. Gomes and O. Oliveira, The bootstrap methodology in Statistics of Extremes - choice of the optimal sample fraction, Extremes 4 (4) (2001), 331-358. | Zbl 1023.62048
[009] [10] L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tract 32, Amesterdam 1970. | Zbl 0226.60039
[010] [11] L. de Haan and A. Ferreira, Extreme Value Theory: an Introduction, Springer, LLC New York 2006. | Zbl 1101.62002
[011] [12] B.M. Hill, A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics 3 (5) (1975), 1163-1174. | Zbl 0323.62033