Generalized F tests in models with random perturbations: the gamma case
Célia Maria Pinto Nunes ; Sandra Maria Bargão Saraiva Ferreira ; Dário Jorge da Conceição Ferreira
Discussiones Mathematicae Probability and Statistics, Tome 29 (2009), p. 185-197 / Harvested from The Polish Digital Mathematics Library

Generalized F tests were introduced for linear models by Michalski and Zmyślony (1996, 1999). When the observations are taken in not perfectly standardized conditions the F tests have generalized F distributions with random non-centrality parameters, see Nunes and Mexia (2006). We now study the case of nearly normal perturbations leading to Gamma distributed non-centrality parameters.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:277035
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1114,
     author = {C\'elia Maria Pinto Nunes and Sandra Maria Barg\~ao Saraiva Ferreira and D\'ario Jorge da Concei\c c\~ao Ferreira},
     title = {Generalized F tests in models with random perturbations: the gamma case},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {29},
     year = {2009},
     pages = {185-197},
     zbl = {1208.62024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1114}
}
Célia Maria Pinto Nunes; Sandra Maria Bargão Saraiva Ferreira; Dário Jorge da Conceição Ferreira. Generalized F tests in models with random perturbations: the gamma case. Discussiones Mathematicae Probability and Statistics, Tome 29 (2009) pp. 185-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1114/

[000] [1] R.B. Davies, Algorithm AS 155: The distribution of a linear combinations of χ² random variables, Applied Statistics 29 (1980), 232-333. | Zbl 0473.62025

[001] [2] J.P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426. | Zbl 0136.41103

[002] [3] M. Fonseca, J.T. Mexia and R. Zmyślony, Exact distribution for the generalized F tests, Discuss. Math. Probab. Stat. 22 (2002), 37-51. | Zbl 1037.62004

[003] [4] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimators and Tests for Variance Components in Cross Nested Orthogonal Designs, Discuss. Math. Probab. Stat. 23 (2) (2003a), 175-201. | Zbl 1049.62065

[004] [5] M. Fonseca, J.T. Mexia and R. Zmyślony, Estimating and testing of variance components: an application to a grapevine experiment, Biometrical Letters 40 (1) (2003b), 1-7.

[005] [6] D.W. Gaylor and F.N. Hopper, Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite's formula, Technometrics 11 (1969), 691-706.

[006] [7] A.I. Khuri, T. Mathew and B.K. Sinha, Statistical Tests for Mixed Linear Models, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York 1998. | Zbl 0893.62009

[007] [8] A. Michalski and R. Zmyślony, Testing hypothesis for variance components in mixed linear models, Statistics 27 (1996), 297-310. | Zbl 0842.62059

[008] [9] A. Michalski and R. Zmyślony, Testing hypothesis for linear functions of parameters in mixed linear models, Tatra Mountain Mathematical Publications 17 (1999), 103-110. | Zbl 0987.62012

[009] [10] C. Nunes and J.T. Mexia, Non-central generalized F distributions, Discuss. Math. Probab. Stat. 26 (1) (2006), 47-61. | Zbl 1128.62018

[010] [11] C. Nunes, I. Pinto and J.T. Mexia, F and Selective F tests with balanced cross-nesting and associated models, Discuss. Math. Probab. Stat. 26 (2) (2006), 193-205. | Zbl 1128.62080

[011] [12] H. Robbins, Mixture of distribution, Ann. Math. Statistics 19 (1948), 360-369. | Zbl 0037.36301

[012] [13] H. Robbins and E.J.G. Pitman, Application of the method of mixtures to quadratic forms in normal variates, Ann. Math. Statistics 20 (1949), 552-560. | Zbl 0036.20801

[013] [14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.