Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1110, author = {Maria de F\'atima Brilhante and Sandra Mendon\c ca and Dinis Duarte Pestana and Maria Lu\'\i sa Rocha}, title = {Inference on the location parameter of exponential populations}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {29}, year = {2009}, pages = {115-129}, zbl = {1208.62027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1110} }
Maria de Fátima Brilhante; Sandra Mendonça; Dinis Duarte Pestana; Maria Luísa Rocha. Inference on the location parameter of exponential populations. Discussiones Mathematicae Probability and Statistics, Tome 29 (2009) pp. 115-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1110/
[000] [1] A.A. Aspin, An examination and further developments of a formula arising in the problem of comparing two mean values, Biometrika 35 (1948), 88-97.
[001] [2] A.A. Aspin, Tables for use in comparisons whose accuracy involves two variances, separately estimated, Biometrika 36 (1949), 290-293.
[002] [3] M.F. Brilhante and S. Kotz, Infinite divisibility of the spacings of a Kotz-Kozubowski-Podgórski generalized Laplace model, Statistics & Probability Letters 78 (2008), 2433-2436. | Zbl 1197.60010
[003] [4] M.F. Brilhante, D. Pestana, J. Rocha and S. Velosa, Inferência Estatística Sobre Localização e Escala, Sociedade Portuguesa de Estatística, Ponta Delgada 2001.
[004] [5] H.A. David and H.N. Nagaraja, Order Statistics, 3rd ed., Wiley, New York 2003. | Zbl 1053.62060
[005] [6] R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, Edinburgh 1925. | Zbl 51.0414.08
[006] [7] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd ed., Wiley, New York 1995.
[007] [8] G.W. Oehlert, A First Course in Design and Analysis of Experiments, Freeman, New York 2000.
[008] [9] V. Perlo, On the distribution of `Student's' ratio for samples of three drawn from the rectangular distribution, Biometrika 25 (1933), 203-204. | Zbl 59.1207.08
[009] [10] D. Pestana, F. Brilhante and J. Rocha, The analysis of variance revisited, in Extreme Values and Additive Laws, Lisboa (1999), 73-77.
[010] [11] D. Pestana and J. Rocha, Análise de escala - modelo exponencial, in A Estatística e o Futuro e o Futuro da Estatística, Salamandra, Lisboa (1993), 295-303.
[011] [12] J. Rocha, Localização e Escala em Situações não Clássicas, Dissertação de Doutoramento, Universidade dos Açores, Ponta Delgada 1995.
[012] [13] J. Rocha, Inference on location parameters - internally studentized statistics, Rev. Estat. (2001), 355-356.
[013] [14] F.E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946), 110-114.
[014] [15] H. Scheffé, On solutions of the Behrens-Fisher problem based on the t-distribution, Ann. Math. Stat. 14 (1943), 35-44. | Zbl 0060.30704
[015] [16] H. Scheffé, A note on the Behrens-Fisher problem, Ann. Math. Stat. 15 (1944), 430-432. | Zbl 0060.30705
[016] [17] H. Smith, The problem of comparing the results of two experiments with unequal means, J. Council Sci. Industr. Res. 9 (1936), 211-212.
[017] [18] Student, The probable error of the mean, (Reprinted in E.S. Pearson and J. Wishart, (1958) 'Student's' Collected Papers, Cambridge Univ. Press, Cambridge), Biometrika 6 (1908), 1-25.
[018] [19] B.L. Welch, The significance of the difference between two means when the population variances are unequal, Biometrika 29 (1938), 350-361. | Zbl 0018.22602
[019] [20] B.L. Welch, On the comparison of several mean values: an alternative approach, Biometrika 38 (1951), 330-336. | Zbl 0043.14101