The first-order autoregressive model with uniform innovations is considered. In this paper, we study the bias-robustness and MSE-robustness of modified maximum likelihood estimator of parameter of the model against departures from distribution of white noise. We used the generalized Beta distribution to describe these departures.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1107, author = {Karima Nouali}, title = {Robustness of estimation of first-order autoregressive model under contaminated uniform white noise}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {29}, year = {2009}, pages = {53-68}, zbl = {1208.62140}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1107} }
Karima Nouali. Robustness of estimation of first-order autoregressive model under contaminated uniform white noise. Discussiones Mathematicae Probability and Statistics, Tome 29 (2009) pp. 53-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1107/
[000] [1] J. Andĕl, On AR(1) processes with exponential white noise, Communication In Statistics, A, Theory And Methods 5 (17) (1988), 1481-1495. | Zbl 0639.62082
[001] [2] C.B. Bell and E.P. Smith, Inference for non-negative autoregressive schemes, Communication In statistics, Theory And Methods 15 (1986), 2267-2293. | Zbl 0604.62087
[002] [3] H. Fellag and M. Ibazizen, Estimation of the first-order autoregressive model with contaminated exponential white noise, Journal of Mathematical Sciences 106 (1) (2001), 2652-2656. | Zbl 1002.62067
[003] [4] K. Nouali and H. Fellag, Approximate bias for first-order autoregressive model with uniform innovations. Small sample case, Discussiones Mathematicae, Probability and Statistics 22 (2002), 15-26. | Zbl 1037.62090
[004] [5] K. Nouali and H. Fellag, Testing on the first-order autoregressive model with uniform innovations under contamination, Journal of Mathematical Sciences 131 (3) (2005), 5657-5663. | Zbl 06404768
[005] [6] R. Zieliński, Robustness: A quantitative approach, Bulletin de l'Académie Polonaise des Sciences, Serie Sciences Math., Astronomie et Physique XXV (12) (1977), 1281-1286. | Zbl 0375.62047