On some limit distributions for geometric random sums
Marek T. Malinowski
Discussiones Mathematicae Probability and Statistics, Tome 28 (2008), p. 247-266 / Harvested from The Polish Digital Mathematics Library

We define and give the various characterizations of a new subclass of geometrically infinitely divisible random variables. This subclass, called geometrically semistable, is given as the set of all these random variables which are the limits in distribution of geometric, weighted and shifted random sums. Introduced class is the extension of, considered until now, classes of geometrically stable [5] and geometrically strictly semistable random variables [10]. All the results can be straightforward transfered to the case of random vectors in d.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:277016
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1103,
     author = {Marek T. Malinowski},
     title = {On some limit distributions for geometric random sums},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {28},
     year = {2008},
     pages = {247-266},
     zbl = {1211.60009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1103}
}
Marek T. Malinowski. On some limit distributions for geometric random sums. Discussiones Mathematicae Probability and Statistics, Tome 28 (2008) pp. 247-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1103/

[000] [1] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Univ. Press, Cambridge 2004. | Zbl 1073.60002

[001] [2] B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables, second ed., Addison-Wesley, Reading, Mass.-London 1968. | Zbl 0056.36001

[002] [3] V. Kalashnikov, Geometric sums: Bounds for rare events with applications, Kluwer Academic Publishers, Dordrecht 1997. | Zbl 0881.60043

[003] [4] L.B. Klebanov, G.M. Maniya and I.A. Melamed, A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables, Theory Prob. Appl. 29 (1985), 791-794. | Zbl 0579.60016

[004] [5] T.J. Kozubowski, The inner characterization of geometric stable laws, Statist. Decisions 12 (1994), 307-321. | Zbl 0923.60020

[005] [6] T.J. Kozubowski, Representation and properties of geometric stable laws, Approximation, probability, and related fields, ed. by G. Anastassiou and S.T. Rachev, Plenum Press, New York 1994, pp. 321-337. | Zbl 0853.60009

[006] [7] T.J. Kozubowski and S.T. Rachev, Univariate geometric stable laws, J. Comput. Anal. Appl. 1 (1999), 177-217.

[007] [8] G.D. Lin, Characterizations of the Laplace and related distributions via geometric compound, Sankhya Ser. A 56 (1994), 1-9. | Zbl 0806.62010

[008] [9] E. Lukacs, Characteristic functions, second ed., Griffin, London 1970.

[009] [10] M.T. Malinowski, Geometrically strictly semistable laws as the limit laws, Discussiones Mathematicae Probability and Statistics 27 (2007), 79-97.

[010] [11] M. Maejima and G. Samorodnitsky, Certain probabilistic aspects of semistable laws, Ann. Inst. Statist. Math. 51 (1999), 449-462. | Zbl 0954.60002

[011] [12] D. Mejzler, On a certain class of infinitely divisible distributions, Israel J. Math. 16 (1973), 1-19. | Zbl 0276.60022

[012] [13] N.R. Mohan, R. Vasudeva and H.V. Hebbar, On geometrically infinitely divisible laws and geometric domains of attraction, Sankhyã Ser. A 55 (1993), 171-179. | Zbl 0803.60017

[013] [14] S.T. Rachev and G. Samorodnitsky, Geometric stable distributions in Banach spaces, J. Theoret. Probab. 2 (1994), 351-373. | Zbl 0804.60014

[014] [15] G. Samorodnitsky and M.S. Taqqu, Stable non-gaussian random processes: stochastic models with infinite variance, Chapman and Hall, New York-London 1994. | Zbl 0925.60027

[015] [16] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge 1999. | Zbl 0973.60001