It is shown how to define the canonic formulation for orthogonal models associated to commutative Jordan algebras. This canonic formulation is then used to carry out inference. The case of models with commutative orthogonal block structures is stressed out.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1099, author = {Francisco P. Carvalho and Jo\~ao Tiago Mexia and M. Manuela Oliveira}, title = {Canonic inference and commutative orthogonal block structure}, journal = {Discussiones Mathematicae Probability and Statistics}, volume = {28}, year = {2008}, pages = {171-181}, zbl = {1208.62093}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1099} }
Francisco P. Carvalho; João Tiago Mexia; M. Manuela Oliveira. Canonic inference and commutative orthogonal block structure. Discussiones Mathematicae Probability and Statistics, Tome 28 (2008) pp. 171-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1099/
[000] [1] D.J. Ferreira, Inducing pivot variables and variance components in orthogonal normal models, Ph.D Thesis 2005.
[001] [2] S.M. Ferreira, Inferęncia para Modelos Ortogonais com Segregação, Tese de Doutoramento 2006.
[002] [3] M. Fonseca, J.T. Mexia and R. Zmyślony, Binary Operation on Jordan algebras and orthogonal normal models, Linear Algebra And Its Applications (2006), 75-86. | Zbl 1113.62004
[003] [4] A.I. Khuri, Advanced Calculus with Applications in Statistics, 2nd ed., Wiley 2003. | Zbl 1136.26300
[004] [5] J.T. Mexia, Best linear unbiased estimates, duality of F tests and the Scheffé multiple comparison method in presence of controlled heteroscedasticity, Comp. Stat. Data Analysis 10 (3) (1990). | Zbl 0825.62484
[005] [6] J.T. Mexia, Introdução à Inferęncia Estatística Linear, Edições Universitárias Lusófonas 1995.
[006] [7] J.R. Schott, Matrix Analysis for Statistics, Wiley Series in Probability and Statistics 1997.
[007] [8] J. Seely, Linear spaces and unbiased estimators. Application to a mixed linear model, The Annals of Mathenatical Statistics 41 (5) (1970), 1735-1745. | Zbl 0263.62041
[008] [9] R. Zmyślony, Completeness for a family of normal distributions, Mathematic Statistics, Banach Center Publications 6 (1980), 355-357. | Zbl 0464.62003