Variance components estimation in generalized orthogonal models
Célia Fernandes ; Paulo Ramos ; Sandra Saraiva Ferreira ; João Tiago Mexia
Discussiones Mathematicae Probability and Statistics, Tome 27 (2007), p. 99-115 / Harvested from The Polish Digital Mathematics Library

The model y=j=1wXjβ̲j+e̲ is generalized orthogonal if the orthogonal projection matrices on the range spaces of matrices Xj, j = 1, ..., w, commute. Unbiased estimators are obtained for the variance components of such models with cross-nesting.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:277043
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1090,
     author = {C\'elia Fernandes and Paulo Ramos and Sandra Saraiva Ferreira and Jo\~ao Tiago Mexia},
     title = {Variance components estimation in generalized orthogonal models},
     journal = {Discussiones Mathematicae Probability and Statistics},
     volume = {27},
     year = {2007},
     pages = {99-115},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1090}
}
Célia Fernandes; Paulo Ramos; Sandra Saraiva Ferreira; João Tiago Mexia. Variance components estimation in generalized orthogonal models. Discussiones Mathematicae Probability and Statistics, Tome 27 (2007) pp. 99-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1090/

[000] [1] C. Fernandes, P. Ramos and J.T. Mexia, Optimização de Delineamentos em Escada Simples, Actas do XII Congresso Anual da SPE (2005), 247-253.

[001] [2] C. Fernandes, P. Ramos and J.T. Mexia, Optimization of Nested Step Designs, Biometrical Letters 42-2 (2005), 143-151.

[002] [3] C. Fernandes, P. Ramos and J.T. Mexia, Evenness conditions for four cross nested models, Biometrical Letters 43-2 (2006), 109-130.

[003] [4] M. Fonseca, J.T. Mexia and R. Zmyślony, Exact distributions for the generalized F tests, Discussiones Mathematicae - Probability and Statistics 22 (2002), 37-51. | Zbl 1037.62004

[004] [5] E.L. Lehmann, Testing Statistical Hypotesis, Jonh Willey and Sons, New York 1952.

[005] [6] J. Malley, Statistical Applications of Jordan Algebras, Springer-Verlag 1994. | Zbl 0804.62001

[006] [7] A. Michalski and R. Zmyślony, Testing hypothesis for variance components in mixed linear models, Statistics 27 (1996), 297-310. | Zbl 0842.62059

[007] [8] A. Michalski and R. Zmyślony, Testing hypothesis for linear functions of parameters in mixed linear models, Tatra Mountain Mathematical Publications 1999. | Zbl 0987.62012

[008] [9] J. Nelder, The interpretation of negative components of variance, Biometrika 41 (1954), 544-548. | Zbl 0056.12703